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Abstract

In several pattern recognition problems, particularly in image recognition ones, there are often a large number of

features available, but the number of training examples for each pattern is significantly less than the dimension of the

feature space. This statement implies that the sample group covariance matrices often used in the Gaussian maximum

probability classifier are singular. A common solution to this problem is to assume that all groups have equal co-

variance matrices and to use as their estimates the pooled covariance matrix calculated from the whole training set.

This paper uses an alternative estimate for the sample group covariance matrices, here called the mixture covariance,

given by an appropriate linear combination of the sample group and pooled covariance matrices. Experiments were

carried out to evaluate the performance of this method in two biometric classification applications: face and facial

expression. The average recognition rates obtained by using the mixture covariance matrices were higher than the usual

estimates.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A critical issue for the Gaussian maximum
probability classifier is the inverse of the sample

group covariance matrices. Since in practice these

matrices are not known, estimates must be com-

puted based on the observations (pattern exam-

ples) available in a training set. In some

applications, however, there are often a large
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number of features available, but the number of

training examples for each group is limited and

significantly less than the dimension of the feature
space. This implies that the sample group covari-

ance matrices will be singular.

This problem, which is called a ‘‘small sample

size problem’’ (Fukunaga, 1990), is quite common

in pattern recognition, particularly in image rec-

ognition where the number of features is very

large. One way to overcome this problem is to

assume that all groups have equal covariance
matrices and to use as their estimates the weighting

average of each sample group covariance matrix,
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given by the pooled covariance matrix calculated

from the whole training set.

The aim of this work is to investigate another

estimate for the sample group covariance matrices,

here called mixture covariance matrices, given by a

linear combination of the sample group covariance
matrix and the pooled covariance matrix. The

mixture covariance matrices are based on the

Hoffbeck and Landgrebe (1996) approach and

have the property of having the same rank as the

pooled estimate, while allowing a different estimate

for each group. Thus, the mixture estimate may

result in higher accuracy.

In order to evaluate this approach, two biomet-
ric applications were considered: face recognition

and facial expression recognition. The evaluation

used different image databases for each applica-

tion. A probabilistic model was used to combine

the well-known dimensionality reduction tech-

nique called principal component analysis (PCA)

and the Gaussian maximum probability classifier,

and in this way we could investigate the perfor-
mance of the mixture covariance matrices on the

recognition tasks referred to above. Experiments

carried out show that the mixture covariance es-

timates attained the best performance in both ap-

plications.
2. Dimensionality reduction

In biometric applications, the number of train-

ing samples is limited and usually significantly less

than the number of pixels of each image. Thus the

high-dimensional space is very sparsely repre-

sented; making the parameter estimation quite

difficult––a problem that is called the curse of di-

mensionality (e.g., Bishop, 1997).
One of the most successful approaches to the

problem of creating a low dimensional image

representation is based on PCA. PCA generates a

set of orthonormal basis vectors, known as prin-

cipal components, which minimizes the mean

square reconstruction error and describes major

variations in the whole training set considered.

Instead of analysing the maximum probability
classifier directly on the face or facial expression

images, PCA is applied first to provide dimensio-
nality reduction. Many researchers have confirmed

that the PCA representation has good generaliza-

tion ability especially when the distributions of

each class are separated by the mean difference

(Kirby and Sirovich, 1990; Turk and Pentland,

1991; Zhao et al., 1998; Liu and Wechsler, 2000).
However, even after reduction the feature space is

still often of higher dimension than the number of

training samples.
3. Maximum probability classifier

The basic problem in the decision–theoretic
methods for pattern recognition consists of finding a

setofgdiscriminant functionsd1ðxÞ; d2ðxÞ; . . . ; dgðxÞ,
where g is the number of groups or classes, with the
decision rule such that if the p-dimensional pattern
vector x belongs to the class i (16 i6 g), then
diðxÞP djðxÞ, for all i 6¼ j and 16 j6 g.
The Bayes classifier designed to maximize the

total probability of correct classification, where
equal prior probabilities for all groups are as-

sumed, corresponds to a set of discriminant func-

tions equal to the corresponding probability density

functions, that is, diðxÞ ¼ fiðxÞ for all classes

(Johnson and Wichern, 1998). The most common

probability density function applied to pattern

recognition systems is based on the Gaussian

multivariate distribution

diðxÞ ¼ fiðxjli;RiÞ

¼ 1

ð2pÞp=2jRij1=2
exp

�
� 1
2
ðx�liÞ

TR�1
i ðx�liÞ

�
;

ð1Þ
where li and Ri are the class i population mean
vector and covariance matrix respectively. The

notation ‘‘j � j’’ denotes the determinant of a matrix.
In practice, however, the true values of the

mean and the covariance matrix are seldom known

and must be estimated from training samples. The

mean is estimated by the usual sample mean

li � �xxi ¼
1

ki

Xki
j¼1

xi;j; ð2Þ

where xi;j is observation j from class i, and ki is the
number of training observations from class i. The
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covariance matrix is commonly estimated by the

sample group covariance matrix defined as

Ri � Si ¼
1

ðki � 1Þ
Xki
j¼1

ðxi;j � �xxiÞðxi;j � �xxiÞT: ð3Þ

If we replace the true values of the mean and

the covariance matrix in Eq. (1) by their respec-

tive estimates, the Bayes decision rule achieves

optimal classification accuracy only when the

number of training samples increases toward in-

finity (e.g., Hoffbeck and Landgrebe, 1996). In

fact for p-dimensional patterns the sample co-
variance matrix is singular if less than p þ 1 in-
dependent training examples from each class i are
available, that is, the sample covariance matrix

cannot be calculated if ki is less than the dimen-
sion of the feature space.

One method routinely applied to solve this

problem is to assume that all classes have equal

covariance matrices, and to use as their estimates

the pooled covariance matrix. This covariance
matrix is a weighting average of each sample group

covariance matrix and, assuming that all classes

have the same number of training observations, is

given by

Spooled ¼
1

g

Xg
i¼1

Si: ð4Þ

Since more observations are taken to calculate the

pooled covariance matrix Spooled, this one will po-
tentially have a higher rank than Si and will be
eventually full rank. Although the pooled estimate

does provide a solution for the algebraic problem
arising from the insufficient number of training

observations in each group, Spooled is theoretically a
consistent estimator of the true covariance matri-

ces only when R1 ¼ R2 ¼ � � � ¼ Rg.
1x

Fig. 1. Geometric idea of the mixture covariance matrix.
4. Mixture covariance matrix

The choice between the sample group covari-

ance matrix and the pooled covariance one repre-

sents a limited set of estimates for the true

covariance matrix. A more flexible set can be ob-

tained using the mixture covariance matrix.
4.1. Definition

The mixture covariance matrix is a linear

combination between the pooled covariance ma-

trix Spooled and the sample covariance matrix of one
class Si. It is given by

Smixi ðwiÞ ¼ wiSpooled þ ð1� wiÞSi; ð5Þ
where the mixture parameter wi takes on values

0 < wi 6 1 and is different for each class. This pa-

rameter controls the degree of shrinkage of the

sample group covariance matrix estimates toward

the pooled one.
Fig. 1 illustrates the geometric idea of the

mixture covariance matrix on a two-dimensional

feature space containing three hypothetical classes.

The constant probability densities contours of Si
and Spooled are represented by the dashed and

dotted gray ellipses respectively. The mixture

covariance estimates assume that the ellipses cor-

responding to the true covariance matrices are
placed somewhere in between Si and Spooled con-
tours, as shown by the solid black ellipses.

Each Smixi matrix has the important property of

admitting an inverse if the pooled estimate Spooled
does so (Magnus and Neudecker, 1999, pp. 21–22).

This implies that if the pooled estimate is non-

singular and the mixture parameter takes on val-

ues wi > 0, then the Smixi will be non-singular.
Therefore the remaining question is: what is the

value of the wi that gives a relevant linear mix-

ture between the pooled and sample covariance
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estimates? A method that determines an appro-

priate value of the mixture parameter is described

in the next section.

4.2. The mixture parameter

According to Hoffbeck and Landgrebe (1996),

the value of the mixture parameter wi can be ap-

propriately selected so that a best fit to the training

samples is achieved. Their technique is based on

the leave-one-out-likelihood (L) parameter esti-
mation (Fukunaga, 1990).

In the L method, one observation of the class i
training set is removed and the mean and covari-
ance matrix from the remaining ki � 1 examples is
estimated. After that the likelihood of the excluded

sample is calculated given the previous mean and

covariance matrix estimates. This operation is re-

peated a further ki � 1 times and the average log
likelihood is computed over all the ki observations.
The strategy is to evaluate several different values

of wi in the range 0 < wi 6 1, and then choose wi

that maximizes the average log likelihood.

The mean of class i without observation r may
be computed as

�xxinr ¼
1

ðki � 1Þ
Xki
j¼1

xi;j

 !"
� xi;r

#
: ð6Þ

The notation i n r conforms to the Hoffbeck and
Landgrebe (1996) work. It indicates that the cor-

responding quantity is calculated with the rth ob-
servation from class i removed. Following the
same idea, the sample covariance matrix and the

pooled covariance matrix of class i without ob-
servation r are

Sinr ¼
1

ðki � 2Þ
Xki
j¼1

ðxi;j

 "
� �xxinrÞðxi;j � �xxinrÞT

!

� ðxi;r � �xxinrÞðxi;r � �xxinrÞT
#
; ð7Þ

Spooledinr ¼
1

g

Xg
j¼1

Sj

 !"
� Si þ Sinr

#
: ð8Þ

Thus the average log likelihood of the excluded

observations can be calculated as follows:
LiðwiÞ ¼
1

ki

Xki
r¼1

ln f xi;rj�xxinr; Smixinr ðwiÞ
� 	h i" #

; ð9Þ

where f ðxi;rj�xxinr; Smixinr ðwiÞÞ is the Gaussian prob-
ability function defined in Eq. (1) with �xxinr mean
vector and Smixinr ðwiÞ covariance matrix defined as
Smixinr ðwiÞ ¼ wiSpooledinr þ ð1� wiÞSinr: ð10Þ

As Hoffbeck and Landgrebe (1996) pointed out,

this approach, if implemented in a straightforward

way, would require computing the inverse and

determinant of the Smixinr ðwiÞ for each training

sample. Since the Smixinr ðwiÞ is a p by p matrix and p
is typically a large number, this computation

would be quite expensive. However, they showed

that it is possible to significantly reduce the re-
quired computation by using the Sherman–Mor-

rison–Woodbury formula (Golub and Van Loan,

1989, p. 51) given by

ðAþ uuTÞ�1 ¼ A�1 � A�1uuTA�1

1þ uTA�1u
: ð11Þ

where A is a n by n matrix and u is a n by 1 vector.
This allowed them to write the log likelihood of

the excluded samples in an analogous form as

follows:

ln f xi;rj�xxinr; Smixinr ðwiÞ
� 	h i

¼ � p
2
lnð2pÞ � 1

2
ln jQjð1½ � vdÞ�

� 1
2

ki
ki � 1

� 
2 d
1� vd

� �
; ð12Þ

where

Q ¼ ð1
�

� wiÞ
ðki � 1Þ
ðki � 2Þ

þ wi
1

gðki � 2Þ

�
Si þ wiSpooled;

ð13Þ

v ¼ ki
ðki � 1Þðki � 2Þ

1

�
� wi

ðg � 1Þ
g

�
; ð14Þ

d ¼ ðxi;r � �xxiÞTQ�1ðxi;r � �xxiÞ: ð15Þ
Finally, when the parameter wi is selected, the

mixture covariance matrix estimate defined in Eq.

(5) is calculated using all the training examples and
replaced into the maximum probability classifier.
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5. Experiments

Two biometric experiments with two different

databases were performed.

In the face recognition experiment the olivetti
face database (ORL) containing ten images for

each of 40 individuals, a total of 400 images, were

used. The Tohoku University has provided the

database for the facial expression experiment. This

database is composed of 193 images of expressions

posed by nine Japanese females (Lyons et al.,

1999). Each person posed three or four examples

of each six fundamental facial expression: anger,
disgust, fear, happiness, sadness and surprise. The

database has at least 29 images for each funda-

mental facial expression. For implementation

convenience all images were first resized to 64 · 64
pixels.

The experiments were carried out as follows.

First PCA reduces the dimensionality of the

original images and secondly the Gaussian max-
imum probability classifier using one out of the

three covariance estimates Si (or Sgroup), Spooled
(or Spooled) and Smixi (or Smix) was applied.

Each experiment was repeated 25 times using

several PCA dimensions. Distinct training and

test sets were randomly drawn, and the mean and

standard deviation of the recognition rate were

calculated.
The face recognition classification was com-

puted using for each individual five images to train

and five images to test. In the facial expression

recognition, the training and test sets were re-

spectively composed of 20 and 9 images. The size

of the mixture parameter (0 < wi 6 1) optimisation
Table 1

Face recognition results

PCA

components

Sgroup Spooled

Training Test Training

4 99.5 (0.4) 51.6 (4.4) 73.3 (3.1

10 96.6 (1.2

20 99.2 (0.6

30 99.9 (0.2

40 100.0 (0.0

50 100.0 (0.0

60 100.0 (0.0

70 100.0 (0.0
range was taken to be 20, that is wi ¼ ½0:05; 0:10;
0:15; . . . ; 1�.
6. Results

Tables 1 and 2 present the training and test

average recognition rates (with standard devia-

tions) of the face and facial expression databases,

respectively, over the different PCA dimensions.

Also the optimised mixture parameters wi over the

common PCA components of both applications

are shown in Table 3.

Since only five images of each individual were
used to form the face recognition training set, the

results relative to the sample group covariance

estimate were limited to four PCA components.

Table 1 shows that in all but one experiment the

Smixi (or Smix) estimate led to higher accuracy than

either the pooled or the sample group covariance

matrices. In terms of how sensitive the mixture

covariance results were to the choice of the train-
ing and test sets, it is fair to say that the Smixi

standard deviations were similar to the pooled

estimate.

Table 2 shows the results of the facial expres-

sion recognition. For more than 20 components

when the sample group covariance estimate be-

came singular, the mixture covariance estimate

reached higher recognition rates than the pooled
covariance estimate. Again, regarding the com-

puted standard deviations, the Smixi estimate

showed to be as sensitive to the choice of the

training and test sets as the other two estimates.
Smix

Test Training Test

) 59.5 (3.0) 90.1 (2.1) 70.8 (3.2)

) 88.4 (1.4) 99.4 (0.5) 92.0 (1.5)

) 91.8 (1.8) 100.0 (0.1) 94.5 (1.7)

) 94.7 (1.7) 100.0 (0.0) 95.9 (1.5)

) 95.4 (1.5) 100.0 (0.0) 96.2 (1.6)

) 95.7 (1.2) 100.0 (0.0) 96.4 (1.5)

) 95.0 (1.6) 100.0 (0.0) 95.8 (1.6)

) 94.9 (1.6) 100.0 (0.0) 95.4 (1.6)



Table 2

Facial expression recognition results

PCA

components

Sgroup Spooled Smix

Training Test Training Test Training Test

5 41.5 (4.2) 20.6 (3.9) 32.3 (3.0) 21.6 (3.8) 34.9 (3.3) 21.3 (4.1)

10 76.3 (3.6) 38.8 (5.6) 49.6 (3.9) 26.5 (6.8) 58.5 (3.7) 27.9 (5.6)

15 99.7 (0.5) 64.3 (6.4) 69.1 (3.6) 44.4 (5.3) 82.9 (2.9) 49.7 (7.7)

20 81.2 (2.6) 55.9 (7.7) 91.4 (2.8) 61.3 (7.1)

25 86.9 (2.8) 64.9 (6.9) 94.8 (2.2) 68.3 (5.1)

30 91.9 (1.7) 70.1 (7.8) 96.8 (1.3) 72.3 (6.2)

35 94.3 (1.7) 72.0 (7.4) 97.7 (1.1) 75.6 (5.5)

40 95.9 (1.4) 75.6 (7.1) 98.3 (1.1) 77.2 (5.7)

45 96.7 (1.3) 78.4 (6.5) 98.6 (0.8) 79.1 (5.4)

50 97.6 (1.0) 79.4 (5.8) 99.2 (0.7) 81.0 (6.6)

55 98.5 (0.9) 81.6 (6.6) 99.5 (0.6) 82.8 (6.3)

60 99.1 (0.8) 82.1 (5.9) 99.6 (0.6) 83.6 (7.2)

65 99.5 (0.6) 83.3 (5.5) 99.8 (0.4) 84.5 (6.2)

Table 3

The average (with standard deviations) of the optimum mixture

parameters

PCA

components

Linear mixture parameter

Face Facial expression

10 0.58 (0.25) 0.76 (0.19)

20 0.65 (0.21) 0.49 (0.15)

30 0.71 (0.18) 0.56 (0.15)

40 0.77 (0.16) 0.67 (0.15)

50 0.82 (0.13) 0.77 (0.11)

60 0.85 (0.11) 0.85 (0.09)
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Another result revealed by these experiments is

related to the optimum mixture parameters wi.

Table 3 shows the average (with standard devia-

tions) of the selected mixture parameter wi over the

common face and facial expression PCA compo-
nents. It can be seen that as the dimension of the

feature space increases, the average and standard

deviation of the mixture parameter wi in all but

one experiment increases and decreases respec-

tively, making the mixture covariance of each class

(Smixi ) more similar to the pooled covariance

(Spooled) than the sample group one (Si). Although
this behaviour depends on the applications con-
sidered, it suggests that in both pre-processed

image classification tasks the sparseness of the

sample group covariance matrix could influence its

linear combination to the pooled covariance ma-

trix. In other words, it seems that when the group

sample sizes are small compared with the dimen-
sion of the feature space, the pooled information is
more reliable than that provided sparsely by each

group. Research is currently being done in order to

understand and prove this behaviour under certain

constraints (Thomaz et al., 2001, 2002).
7. Conclusions

This paper used an estimate for the sample

group covariance matrices, here called mixture

covariance matrices, given by an appropriate lin-

ear combination of the sample group covariance

matrix and the pooled covariance one. The mix-

ture covariance matrices have the same rank as the

pooled estimate, while allowing a different estimate

for each group.
Extensive experiments were carried out to

evaluate this approach on two biometric recogni-

tion tasks: face recognition and facial expression

recognition. A Gaussian maximum probability

classifier was built using the mixture estimate and

the typical sample group and pooled estimates. In

both tasks the mixture covariance estimate

achieved the highest classification performance.
Regarding the sensitivity to the choice of the

training and test sets, the mixture covariance ma-

trices gave a similar performance to the other two

usual estimates.

The experiments were carried out using well-

framed images without normalisation, in order to
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compare the performance of the different covari-

ance estimators. We would expect the similar

comparative results, perhaps with an overall im-

provement in performance, would be obtained by

using techniques such as normalisation or by in-

corporating other image features.
The results presented in this work suggested

that in both pre-processed image classification

tasks the sparseness of the sample group covari-

ance matrix could influence its linear combination

to the pooled covariance matrix. Further work is

being undertaken to study this relationship.
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