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ABSTRACT 

Analog integrated circuits design is a complex 
task due to the large number of optimization 
parameters involved.  In this work, we propose 
the idea of using Genetic Algorithms (GA) to 
map and understand the multivariate and multi-
objective inherent optimization behavior of the 
SOI CMOS single-end single-stage OTA.  Our 
work uses GA not only to determine the best 
parameters for a specific OTA’s design target, but 
also to track the changes of the W and L 
dimensions of all the OTA’s transistors and 
investigate how these changes affect the OTA’s 
optimization process when operating on distinct 
specific design targets.  Our experimental results 
have been compared to the literature and SPICE 
simulations have been carried out to validate our 
GA approach. 

1. INTRODUCTION 
Analog integrated circuits design is a complex 

task due to the large number of optimization 
parameters involved, such as the transistor 
dimensions, given by the channel width (W) and 
length (L), the values of transconductance over 
drain current ratio (gm/IDS) and Early voltage 
(VEA) of each transistor, as well as different 
design objectives, such as DC bias conditions, 
open-loop voltage gain (AV0), unit voltage gain 
frequency (fT), phase margin and slew rate.  There 
are several possible solutions based, for instance, 
on transistors’ dimensions combinations and 
inversion regime conditions that can be proposed 
to achieve specific design targets (DT).  In 
practice, the solution of a DT depends essentially 
on the experience of the designer [1,2]. 

In this work, we propose the idea of using GA 
[10] to map and understand the multivariate and 
multi-objective inherent optimization behavior of 
the SOI CMOS OTA, a well-known analog 
integrated circuit.  We are particularly interested 
in tracking the changes of the W and L 
dimensions of all the OTA’s transistors and 
investigate how these changes affect the OTA’s 
optimization process when operating on high-gain 
(HG), high-frequency (HF) and Micropower 
specific design targets.  The following three 
OTA’s operational values have been evaluated 
simultaneously in the GA optimization process: 
AV0, fT and current mirror gain (B). 

2. SOI CMOS OTA BASIC EQUATIONS 
Figure 1 shows the SOI CMOS OTA used in 

this work.  In Figure 1, M1, M2, M7, M8, M9 and 

M10 are SOI nMOSFETs, M3, M4, M5 and M6 
are SOI pMOSFETs, and CL is the capacitive load 
[9].  More specifically, M1 and M2 transistors are 
defined as the differential pair, whereas the pairs 
M3–5, M4–6, M7–8 and M9–10 are defined as 
the current mirrors.  The pair M9–10 is 
responsible for the current bias of the differential 
pair.  Also, Vdd is the voltage supply, vI+ and vI- 
are the differential inputs, Ipol is the current bias, 
Io is the current output of the current mirror 
composed of M9 and M10, and IDS1 and IDS2 are 
the current drain of the differential pair. 
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Figure 1. SOI CMOS OTA schematics. 

 

The current mirror gain of M4 and M6 is 
given by the following equation [6]: 
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where L4 and L6 are the channel lengths and W4 
and W6 are the channel widths for M4 and M6, 
respectively.  The open-loop voltage gain of the 
SOI CMOS OTA can be calculated as [6]:  +=
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where gm/IDS is the transconductance over drain 
current ratio of M1 or M2, and VEA6 and VEA8 are 
the Early voltages for M6 and M8, respectively.  
The unit voltage gain frequency is then given by :  π=
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Equations (1)–(3) form the basis of our GA 
approach described in the next section. 

3. OUR GA APPROACH 
GA is a well-known Artificial Intelligence 

optimization technique based on the principles of 
natural selection and evolution [10]. 

There are a number of works that apply GA in 
analog integrated circuits optimization [2-5,12].  
For instance, the work described in [3] applies 
GA for complex filters designing, such as 
asymmetric filters, using frequency response 
analysis to evaluate the circuit.  In [4], a similar 



work to ours is presented where the authors apply 
GA in an operational transconductance amplifier 
design, but with different evaluation function and 
schematic.  In [12], the authors have proposed a 
multi-objective genetic optimization based on 
Pareto-optimal design points for analog integrated 
circuits.  However, to the best of our knowledge, 
this is the first study that uses GA not only to 
determine the best W/L parameters for a specific 
OTA’s DT, but also to map and understand the 
multivariate and multi-objective behaviors of 
such optimization process using these parameters 
exclusively. 

Since our GA evaluation process is based on 
the gm/IDS x IDS/(W/L) methodology of analog 
integrated circuits design [7], it is necessary to 
determine firstly the dissipation power (P) and 
Vdd in order to define the transistors inversion 
regimes and DC bias conditions.  Besides those 
parameters, the analog integrated circuits designer 
needs to specify the VEAxL and gm/IDS x IDS/(W/L) 
curves of the technology to be optimized, as well 
as the OTA design targets for AV0, fT and B. 
3.1. Chromosome Representation 

Figure 2 shows the chromosome representation 
of our GA approach.  All the W and L alleles are 
binary numbers composed of 11 bits.  Each 
chromosome (or individual) is evaluated using the 
AV0, fT and B functions described previously in 
the basis-equations (1)–(3).  Since M1=M2, 
M3=M4, M5=M6 and M7=M8, it is important to 
note that the M8 channel width (W8) is not 
represented in our chromosome because all the 
basis-equations do not take this parameter into 
account in their respective formulas.  In fact, W8 
determines the output node DC bias condition and 
will be considered during the SPICE simulation 
only. 
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Figure 2.  Chromosome representation. 

3.2. Fitness Function 
 

To allow a symmetric and monotonically 
decreasing evaluation of all the individuals, that 
is, individuals that represent solutions close to the 
AV0, fT and B specific DTs should have higher 
values than those far from the aforementioned 
DTs, we have adopted the Gaussian evaluation 
functions described in our previous work [11] for 
the open-loop gain, unit voltage gain frequency 
and current mirror gain for each GA individual, 
considering the respective targets specified by the 
designer before the optimization.  The fitness 
function of our GA optimization process is very 
simple and defined as an arithmetic mean of all 
these evaluations.  Therefore, all the three 
objectives have the same weight on the GA 
fitness function and the individuals that fit better 
all the three objectives simultaneously will 

receive higher evaluations in the optimization 
process. 
3.3. GA Optimization Process 

Firstly, the algorithm generates an initial 
population with random values for W and L.  
Once an initial population has been created, each 
individual is evaluated taking into account the 
design targets specified.  The best evaluated 
individual is saved in memory to be used further, 
in the elitism process.  Next, the selection process 
is carried out. This process selects pairs of 
individuals used in the reproduction process.  
Individuals have been selected using the well-
known roulette method [?,10].  In the roulette 
method, solutions with better evaluations have 
more chance to be selected for reproduction than 
the others.  In this step of the algorithm, the W 
and L alleles of the selected individuals are 
swapped using the one-point crossover [10].  The 
rate of this reproduction process (crossover rate) 
is an input parameter of the algorithm and has to 
be set by the designer.  Then, the mutation of 
some individuals occurs.  In our binary 
chromosome representation, this mutation step 
essentially flips some bits that compose the W 
and L alleles.  Analogously to the crossover rate, 
the mutation rate is an input parameter and has to 
be set by the designer as well.  After selection, 
reproduction, mutation and elitism, a new 
generation is created [11].  GA keeps processing 
the new generations until reaching the total 
number of individuals defined by the designer. 
The total number of individuals is an input 
parameter and represents the total of individuals 
that has to be generated by the algorithm, 
considering that each generation creates new 
individuals.  A new run means starting the GA 
process of evolution again with a new randomly 
generated population.  The designer has to choose 
the number of runs and, as larger is this number 
of runs, more possible solutions are presented at 
the end of GA optimization process. 

4. GA EXPERIMENTS AND RESULTS 
The GA process was applied for three different 

OTA operational modes or design targets, that is, 
HG, HF and Micropower applications, following 
the reference [6], as indicated in Table I. 
 

Table I: OTAs specific design targets. 

OTA Design Target VDD (V) Ptot (W) AV0 (dB) fT (MHz) 

Micropower 1.2 5.10-6 44 0.35 

High Gain (HG) 2 100.10-6 65 1.8 

High Frequency (HF) 4 30.10-3 35 93 

 

The CL parameter was considered equal to 
10pF.  The range values of W and L were 1 to 
1000µm and 1 to 20µm, respectively, in order to 
limit the GA searching space of solutions and 
avoid unpractical solutions (i.e., dimensions 
smaller than minimal dimensions of the 



technology investigated or too much large). The 
GA mutation and crossover rates were defined as 
9% and 65%, respectively.  Moreover, the GA 
optimization process was set to perform 20 runs 
with a maximum of 100,000 total individuals. 
The B value was defined equal to 1 for all design 
targets in our GA optimization process. 

To map and understand the GA convergence 
behavior, Figure 3 presents the tracking of the 
changes on the OTA’s parameters L (Figure 3.a 
and 3.b), W (Figure 3.c and 3.d), W/L (Figure 3.e 
and 3.f), and IDS/(W/L) (Figure 3.g) during 
optimization, for all the operational modes 
considered, as a function of the number of 
individuals. 

Analyzing these results in details, the following 
observations can be made.  Since AV0 depends on 
the product over sum ratio of M6 and M8 Early 
voltages, the GA optimization process in the HG 
OTA has defined its channel lengths 
(approximately 20µm for both transistors) with 
the largest values, in comparison to HF and 
Micropower, maximizing the M6 and M8 Early 
voltages. It is important to note that the M8 L of 
HF is larger than M8 L in the Micropower, 
because the HF differential pair (M1 and M2) is 
in the strong inversion regime (Figure 3.h) and, 
consequently, it presents a lower gm/IDS than the 
M1 and M2 of the Micropower OTA, which are 
in the weak inversion regime (large gm/IDS values 
in relation to HG OTA).  For OTAs with high 
voltage gain approach (HG and Micropower), the 
pMOSFETs current mirrors (M3/M5 and M4/M6) 
must present larger W/L values than the 
differential pair, in contrast to HF OTAs, as 
indicated in Figures 3.e and 3.f.  We believe that 
this is important design information, but not 
reported in the literature yet.  The W and L values 
are found by GA optimization process 
considering the design target that B=1. The W 
range values are approximately from 250 to 
800µm, according to [6].  It is important to 
emphasize that the W values obtained with our 
GA optimization process cannot be compared 
with the W values of reference [6], because our 
GA approach has not implemented the source by 
transistors dimensions regarding smallest OTA 
die area.  Analyzing Figure 3.g, and given the AV0 
and fT conditions shown in Table I, the 
differential pair of HF OTA must be biased in the 
end of moderate inversion regime, near to strong 
inversion regime, in contrast to pMOSFETs 
current mirrors (M3-M6).  In fact, the 
pMOSFETs current mirrors must be biased in the 
strong inversion, in order to reach high frequency 
response [6]. On the other hand, for HG OTA, the 
differential pair of the pMOSFETs current 
mirrors must be biased in the moderate inversion 
regime, but pMOSFETs current mirrors must be 
biased nearest to the strong inversion regime 

rather than to the differential pair in order to 
attain the desired AV0 and fT values [6].  In 
addition, for Micropower OTA, the differential 
pair must be biased in moderate inversion regime 
in contrast to pMOSFETs current mirrors, which 
must be biased in weak inversion regime, 
according to the reference [6]. Therefore, when 
we have to design an HF OTA, the pMOSFETs 
current mirrors must be biased more in the strong 
inversion regime than in the differential pair, in 
contrast to HG and Micropower OTAs, regarding 
the desired AV0 and fT values considered.  Since 
B=1, to achieve the desired AV0 and fT values of 
the studied OTAs, the behaviors of pMOSFET 
current mirrors have been optimized generating 
approximately the same relative values (Figures 
3.e and 3.f). 
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Figure 3. HF, HG and Micropower GA optimization changes. 

5. SPICE Simulations 
In order to validate the transistors dimensions 

obtained by the GA optimization, SPICE 
simulations were performed.  Figure 4 illustrates 
the Bode plot of the W and L parameters 
optimized by our GA approach. 
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Figure 4. Bode plotter of HF, HG and Micropower OTAs. 

 
Table II presents the simulated AV0 and fT 

results of HG, HF and Micropower OTAs, which 
all transistors are biased in the saturation region 
and OTA Vout is biased around of Vdd/2.  As can 
be seen, despite the fact that the GA evaluation 
function has been defined with equals weights for 
AV0 and fT, the SPICE simulation results indicate 
that GA optimization process was able to reach 
satisfactory fT values regarding logarithmic scale, 
but overestimated the desired OTA AV0. The large 
differences between desired and simulation OTA 
AV0 can be explained by the fact that we have 
used AV0 and fT first order equations to perform 
the optimization. Besides that, it is important to 
note that HF OTA presents AV0 and fT values 
larger than those of reference [6], resulting in a 
differential pair W obtained by the GA 
optimization around 2 times larger than that of 
reference [6].  Thus, we can degrade AV0 and fT 
by reducing differential pair W dimensions in 
order to reach the dimensions described in 
reference [6]. Additionally, thinking in an 
automatic tool of analog integrated circuits design 

to be used to predict all transistor dimensions at 
once and performing a few others iterations with 
SPICE simulator, we believe that it is possible to 
generate automatically better solutions, reducing 
significantly the design time and cost of analog 
integrated circuits. 
Table II: SPICE simulations regarding AV0 and fT targets. 

OTA Specific Designs 
fT target 
(MHz) 

fT SPICE 
(MHz) 

AV0 
target 
(dB) 

AV0 
SPICE 
(dB) 

Micropower 0.35 0.3 44 64 
High Gain (HG) 1.8 1.1 65 82 

High Frequency (HF) 93 180 35 53 

6. CONCLUSION 
This paper proposed the use of Genetic 

Algorithms to automate the analog integrated 
circuits design, a complex optimization task 
dependent mostly on the expertise of the analog 
designer.  More importantly, this work focused on 
mapping and understanding the transistors 
dimensions and inversion regimes conditions for 
different OTA design targets, highlighting 
important design information.  We believe that 
this proposed tool can reduce significantly the 
time and cost of analog integrated circuits design, 
providing relevant information about the inherent 
multivariate and multi-objective OTA behavior. 
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