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Abstract 
 

A critical issue of applying Linear Discriminant 

Analysis (LDA) is both the singularity and instability of 

the within-class scatter matrix.  In practice, 

particularly in image recognition applications such as 

face recognition, there are often a large number of 

pixels or pre-processed features available, but the total 

number of training patterns is limited and commonly 

less than the dimension of the feature space.  In this 

paper, a maximum uncertainty LDA-based method is 

proposed. It is based on a straightforward stabilisation 

approach for the within-class scatter matrix.  In order 

to evaluate its effectiveness, experiments on face 

recognition using the well-known ORL and FERET 

face databases were carried out and compared with 

other LDA-based methods.  The results indicate that 

our method im-proves the LDA classification 

performance when the within-class scatter matrix is 

not only singular but also poorly estimated, with or 

without a Principal Component Analysis intermediate 

step and using less linear discriminant features. 

 

1. Introduction 
 

The Fisher Discriminant Analysis, also called the 

Linear Discriminant Analysis (LDA), has been used 

successfully as a statistical feature extraction technique 

in several classification problems. 

A critical issue in using LDA is, however, the 

singularity and instability of the within-class scatter 

matrix.  In practice, particularly in image recognition 

applications such as face recognition, there are often a 

large number of pixels or pre-processed features avail-

able, but the total number of training patterns is limited 

and commonly less than the dimension of the feature 

space.  This implies that the within-class scatter matrix 

either will be singular if its rank is less than the number 

of features or might be unstable if the total number of 

training patterns is not significantly larger than the 

dimension of the feature space. 

A considerable amount of research has been devoted 

to the design of other Fisher-based methods, for 

targeting small sample and high dimensional problems 

[1, 2, 13, 14, 15, 16].  However, less attention has been 

paid to problems where the dimensionality of the 

feature space is comparable to the total number of 

training examples.  In this situation, the within-class 

scatter matrix is full rank but poorly estimated. 

In this paper, a new LDA-based method is 

proposed.  It is based on the straightforward maximum 

entropy covariance selection approach [12] that 

overcomes both the singularity and instability of the 

within-class scatter matrix when LDA is applied in 

limited sample and high dimensional problems.  In 

order to evaluate its effectiveness, experiments on face 

recognition using the well-known ORL and FERET 

face databases were carried out and compared with 

other LDA-based methods.  The results indicate that 

our method improves the LDA classification 

performance when the within-class scatter matrix is 

singular as well as poorly estimated, with or without a 

Principal Component Analysis (PCA) intermediate step 

and using less linear discriminant features. 

 

2. Linear Discriminant Analysis (LDA) 
 

The primary purpose of the Linear Discriminant 

Analysis is to separate samples of distinct groups by 

maximising their between-class separability while 

minimising their within-class variability.  Although 

LDA does not assume that the populations of the dis-

tinct groups are normally distributed, it assumes 

implicitly that the true covariance matrices of each 

class are equal because the same within-class scatter 

matrix is used for all the classes considered. 

Let the between-class scatter matrix bS  be defined 

as 
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and the within-class scatter matrix wS  be defined as 
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where jix ,  is the n-dimensional pattern j  from class 

iπ , iN  is the number of training patterns from class 

iπ , and g  is the total number of classes or groups.  

The vector ix  and matrix iS  are respectively the 

unbiased sample mean and sample covariance matrix of 

class iπ [5].  The grand mean vector x  is given by 
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where N  is the total number of samples, that is, 

gNNNN +++= L21 .  It is important to note that 

the within-class scatter matrix wS  defined in equation 

(2) is essentially the standard pooled covariance matrix 

multiplied by the scalar )( gN − , that is 
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The main objective of LDA is to find a projection 

matrix ldaP  that maximizes the ratio of the determinant 

of the between-class scatter matrix to the determinant 

of the within-class scatter matrix (Fisher’s criterion), 

that is 
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Devijver and Kittler [3] have shown that ldaP  is in fact 

the solution of the following eigensystem problem: 

0=Λ− PSPS wb . (6) 

Multiplying both sides by 1−
wS , equation (6) can be 

rewritten as 
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where P  and Λ  are respectively the eigenvectors and 

eigenvalues of bw SS 1− .  In other words, equation (7) 

states that if wS  is a non-singular matrix then the 

Fisher’s criterion described in equation (5) is 

maximised when the projection matrix ldaP  is 

composed of the eigenvectors of bw SS 1−  with at most 

)1( −g  nonzero corresponding eigenvalues.  This is the 

standard LDA procedure. 

The performance of the standard LDA can be 

seriously degraded if there are only a limited number of 

total training observations N  compared to the 

dimension of the feature space n .  Since the within-

class scatter matrix wS  is a function of )( gN −  or less 

linearly independent vectors, its rank is )( gN −  or 

less.  Therefore, wS  is a singular matrix if N  is less 

than )( gn + , or, analogously, might be unstable if N  

is not at least five to ten times )( gn + [6]. 

In the next section, recent LDA-based methods 

proposed for targeting limited sample and high 

dimensional problems are described.  A novel method 

of combining singular and non-singular covariance 

matrices for solving the singularity and instability of 

the within-class scatter matrix is proposed in section 4. 

 

3. LDA Limited Sample Size Approaches 
 

A considerable amount of research has been devoted to 

the design of other LDA-based methods, for 

overcoming the limited number of samples compared 

to the number of features.  In the following sub-

sections, recent LDA-based methods with application 

to face recognition are described.  Since the face 

recognition problem involves small training sets, a 

large number of features, and a large number of groups, 

it has become the most used application to evaluate 

such limited sample size approaches. 

 

3.1. Fisherfaces Method 
 

The Fisherfaces [1, 16] method is one of the most 

successful feature extraction approaches for solving 

limited sample size problems in face recognition.  It is 

also called the Most Discriminant Features (MDF) 

method [11]. 

The Fisherfaces or MDF method is essentially a 

two-stage dimensionality reduction technique.  First the 

face images from the original vector space are 

projected to a lower dimensional space using Principal 

Component Analysis (PCA) and then LDA is applied 

next to find the best linear discriminant features on that 

PCA subspace. 

More specifically, the MDF projection matrix mdfP  

can be calculated as 

pcaldamdf PPP *= , (8) 

where pcaP  is the projection matrix from the original 

image space to the PCA subspace, and ldaP  is the 



projection matrix from the PCA subspace to the LDA 

subspace obtained by maximising the ratio 
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As described in the previous section, equation (9) 

analogously states that if pcaw
T
pca PSP  is a non-singular 

matrix then the Fisher’s criterion is maximised when 

the projection matrix ldaP  is composed of the 

eigenvectors of )()(
1

pcab
T
pcapcaw

T
pca PSPPSP

−
 with at 

most )1( −g  nonzero corresponding eigenvalues. 

The singularity problem of the within-class scatter 

matrix wS  is then overcome if the number of retained 

principal components varies from at least g  to at most 

gN −  PCA features [1, 11, 16]. 

 

3.2. Chen et al.’s Method (CLDA) 
 

Chen et al. [2] have proposed another LDA-based 

method, here called CLDA, that overcomes the 

singularity problems related to the direct use of LDA in 

small sample size applications, particularly in face 

recognition. 

The main idea of their approach is to use either the 

discriminative information of the null space of the 

within-class scatter matrix to maximise the between-

class scatter matrix whenever wS  is singular, or the 

eigenvectors corresponding to the set of the largest 

eigenvalues of matrix bwb SSS 1)( −+  whenever wS  is 

non-singular.  Fukunaga [5] has proved that the 

eigenvectors of bwb SSS 1)( −+  are the same as bw SS 1− . 

The CLDA algorithm for calculating the projection 

matrix cldaP  can be summarised as follows [2]: 

i. Calculate the rank r  of the within-class scatter 

matrix wS ; 

ii. If wS  is non-singular, that is nr = , then cldaP is 

composed of the eigenvectors corresponding to 

the largest eigenvalues of bwb SSS 1)( −+ ; 

iii. Otherwise, calculate the eigenvectors matrix 

],...,,,...,[ 11 nrr vvvvV +=  of the singular within-

class scatter matrix wS .  Let Q  be the matrix 

that spans the wS  null space, where 

],...,,[ 21 nrr vvvQ ++=  is an n x )( rn −  sub-

matrix of V ; 

iv. The projection matrix cldaP is then composed of 

the eigenvectors corresponding to the largest 

eigenvalues of TT
b

T QQSQQ )( .  Chen et al. 

have proved that those eigenvectors obtained 

through the transformation TQQ  are the most 

discriminant vectors in the original sample 

space [2]. 

Although their experimental results have shown that 

CLDA improves the performance of a face recognition 

system compared with Liu et al.’s approach [8] and the 

standard template matching procedure [7], Chen et al.’s 

approach will select the same linear discriminant 

features as the standard LDA when wS  is non-singular 

but poorly estimated. 

 

3.3. Yu and Yang’s Method (DLDA) 
 

Yu and Yang [15] have developed a direct LDA 

algorithm (DLDA) for high dimensional data with 

application to face recognition that diagonalises 

simultaneously the two symmetric matrices wS  and bS  

[5]. 

The key idea of their method is to discard the null 

space of bS  by diagonalising bS  first and then 

diagonalising wS .  As pointed out by Yu and Yang 

[15] the traditional LDA procedure takes the reverse 

order and consequently discards the null space of wS  

which contains discriminative information [2].  This 

diagonalisation process also avoids the singularity 

problems related to the use of the pure LDA in high 

dimensional data where the within-class scatter matrix 

wS  is likely to be singular [15]. 

The DLDA algorithm for calculating the projection 

matrix dldaP  can be described as follows [15]: 

i. Diagonalise bS , that is calculate the eigenvector 

matrix V  such that Λ=VSV b
T ; 

ii. Let Y  be the first m  columns of V  

corresponding to the bS  largest eigenvalues, 

where )( bSrankm ≤ .  Calculate YSYD b
T

b = , 

where bD  is the diagonal m x m  sub-matrix of 

the eigenvalues matrix Λ ; 

iii. Let 21−
= bYDZ  be a whitening transformation of 

bS  that also reduces its dimensionality from n  

to m , i.e IYDSYDZSZ bb
T

bb
T ==

−−
)()(

2121 ; 

iv. Diagonalise ZSZ w
T , that is compute U  and 

wD  such that ww
TT DUZSZU =)( ; 

v. Calculate the projection matrix dldaP  given by 
TT

wdlda ZUDP
21−= . 

Using computational techniques to handle large 

scatter matrices, Yu and Yang’s [15] experimental 

results have shown that DLDA can be applied on the 



original vector space of face images without any 

explicit intermediate dimensionality reduction step.  

However, they pointed out [15] that by replacing the 

between-class scatter matrix bS  with the total scatter 

matrix TS , given by wbT SSS += , the first two steps 

of their algorithm becomes exactly the PCA 

dimensionality reduction technique. 

 

3.4. Yang and Yang’s Method (YLDA) 
 

More recently, Yang and Yang [14] have proposed a 

linear feature extraction method, here called YLDA, 

which is capable of deriving discriminatory information 

of the LDA criterion in singular cases. 

Analogous to the Fisherfaces method described 

previously in the subsection 3.1, the YLDA is 

explicitly a two-stage dimensionality reduction 

technique.  That is, PCA is used firstly to reduce the 

dimensionality of the original space and then LDA, 

using a particular Fisher-based linear algorithm called 

Optimal Fisher Linear Discriminant (OFLD) [13], is 

applied next to find the best linear discriminant features 

on that PCA subspace. 

The OFLD algorithm [13] can be described as 

follows: 

i. In the m-dimensional PCA transformed space, 

calculate the within-class and between-class 

scatter matrices wS  and bS ; 

ii. Calculate the eigenvectors matrix 

],...,,[ 21 mvvvV =  of wS .  Suppose the first q  

eigenvectors of wS  correspond to its non-zero 

eigenvalues; 

iii. Let a projection matrix be 

],...,,[ 211 mqq vvvP ++= , which spans the null 

space of wS .  Form the transformation matrix 

1Z  composed of the eigenvectors of 11 PSP b
T .  

The first 1k  YLDA discriminant vectors are 

given by 11
1

ZPPylda = , where generally 

11 −= gk ; 

iv. Let a second projection matrix be 

],...,,[ 212 qvvvP = .  Form the transformation 

matrix 2Z  composed of the eigenvectors 

corresponding to the 2k  largest eigenvalues of 

)()( 22
1

22 PSPPSP b
T

w
T − .  The remaining 2k  

YLDA discriminant vectors are given by 

22
2

ZPPylda = , where 2k  is an input parameter 

that can extend the final number of LDA 

features beyond the )1( −g  nonzero bS  

eigenvalues; 

v. Form the projection matrix yldaP  given by the 

concatenation of 
1
yldaP  and 

2
yldaP . 

Yang and Yang [14] have proved that the number 

m  of principal components to retain for a best LDA 

performance should be equal to the rank of the total 

scatter matrix TS , given, as reminder, by 

wbT SSS +=  and calculated on the original space 

[14].  However, no procedure has been shown to 

determine the optimal value for the parameter 2k .  

This parameter is context dependent and consequently 

can vary according to the application studied.  

Moreover, although YLDA addresses the PCA+LDA 

problems when the total scatter matrix TS  is singular, 

such PCA strategy does not avoid the within-class 

scatter instability when TS  is non-singular but poorly 

estimated. 

 

4. Maximum Uncertainty LDA (MLDA) 
 

In order to avoid both the singularity and instability 

critical issues of the within-class scatter matrix wS  

when LDA is used in limited sample and high 

dimensional problems, we propose a new LDA-based 

approach based on a straightforward covariance 

selection method for the wS  matrix [12]. 

 

4.1. Related Methods 
 

In the past, a number of researchers have proposed a 

modification in LDA that makes the problem 

mathematically feasible and increases the LDA stability 

when the within-class scatter matrix wS  has small or 

zero eigenvalues. 

The idea is to replace the pooled covariance matrix 

pS  of the scatter matrix wS  (equation (4)) with a 

ridge-like covariance estimate of the form 

kISkS pp +=)(
)

, (10) 

where I  is the n by n identity matrix and 0≥k .  

According to Rayens [9], a reasonable grid of potential 

simulation values for the optimal k  could be 

maxmin λλ ≤≤ k , (11) 

where the values minλ  and maxλ  are respectively the 

non-zero smallest and largest eigenvalues of the pooled 

covariance matrix pS .  Rayens [9] has suggested that a 

more productive searching process should be based on 

values near minλ  rather than maxλ .  However, this 

reasoning is context-dependent and a time-consuming 



leave-one-out optimisation process is necessary to 

determine the best multiplier for the identity matrix. 

Other researchers have imposed regularisation 

methods to overcome the singularity and instability in 

sample based covariance estimation, especially to 

improve the Bayes Plug-in or QDF classification 

performance [4].  Most of these works have used 

shrinkage parameters that combine linearly a singular 

or unstable covariance matrix, such as pS , to a 

multiple of the identity matrix. 

According to these regularisation methods, the ill 

posed or poorly estimated pS  could be replaced with a 

convex combination matrix )(γpS
)

 of the form 

ISS pp λγγγ )()1()( +−=
)

, (12) 

where the shrinkage parameter γ  takes on values 

10 ≤≤ γ  and could be selected to maximise the leave-

one-out classification accuracy.  The identity matrix 

multiplier would be given by the average eigenvalue λ  

of pS  calculated as 

n

Str
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p
n

j
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where the notation “tr” denotes the trace of a matrix. 

The regularisation idea described in equation (12) 

would have the effect of decreasing the larger 

eigenvalues and increasing the smaller ones, thereby 

counteracting the biasing inherent in sample-based 

estimation of eigenvalues [4]. 

 

4.2. The Proposed Method 
 

The proposed method considers the issue of stabilising 

the pS  estimate with a multiple of the identity matrix 

by selecting the largest dispersions regarding the pS  

average eigenvalue.  It is based on our maximum 

entropy covariance selection idea developed to 

improve quadratic classification performance on 

limited sample size problems [12]. 

Following equation (10), the eigen-decomposition 

of a combination of the covariance matrix pS  and the n 

by n identity matrix I  can be written as 
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where r  is the rank of pS ( nr ≤ ), jλ  is the jth non-

zero eigenvalue of pS , jφ  is the corresponding 

eigenvector, and k  is an identity matrix multiplier.  In 

equation (14), the following alternative representation 

of the identity matrix in terms of any set of orthonormal 

eigenvectors is used 

∑
=

=
n

j

T
jjI

1

)(φφ . (15) 

As can be seen from equation (14), a combination of 

pS  and a multiple of the identity matrix I  as 

described in equation (10) expands all the pS  

eigenvalues, independently whether these eigenvalues 

are either null, small, or even large. 

A possible regularisation method for LDA could be 

the one that decreases the larger eigenvalues and 

increases the smaller ones, as briefly described by 

equation (12) of the previous sub-section.  According 

to this idea, the eigen-decomposition of a convex 

combination of pS  and the n by n identity matrix I  

can be written as 
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where the mixing parameter γ  takes on values 

10 ≤≤ γ  and λ  is the average eigenvalue of pS . 

Despite the substantial amount of computation 

saved by taking advantage of matrix updating formulas 

[4, 9], the regularisation method described in equation 

(16) would require the computation of the eigenvalues 

and eigenvectors of an n by n matrix for each training 

observation of all the classes in order to find the best 

mixing parameter γ .  In recognition applications 

where several classes and a large total number of 

training observations are considered, such as face 

recognition, this regularisation method might be 

unfeasible. 

Yet, equation (16) describes essentially a convex 

combination between a singular or poorly estimated 

covariance matrix, the pooled covariance matrix pS , 

and a non-singular or well-estimated covariance matrix: 

the identity matrix I .  Therefore, the same idea 

described in [12] of selecting the most reliable linear 

features when blending such covariance matrices can 

be used. 

Since the estimation errors of the non-dominant or 

small eigenvalues are much greater than those of the 

dominant or large eigenvalues [5], we propose the 

following selection algorithm in order to expand only 



the smaller and consequently less reliable eigenvalues 

of pS , and keep most of its larger eigenvalues 

unchanged: 

i. Find the Φ  eigenvectors and Λ  eigenvalues of 

pS , where ][ gNSS wp −= ; 

ii. Calculate the pS  average eigenvalue λ  using 

equation (13); 

iii. Form a new matrix of eigenvalues based on the 

following largest dispersion values 

)],max(),...,,[max( 1
* λλλλ ndiag=Λ ; (17a) 

iv. Form the modified within-class scatter matrix 

))(()( *** gNgNSS T
pw −ΦΦΛ=−= . (17b) 

The maximum uncertainty LDA (MLDA) is 

constructed by replacing wS  with *
wS  in the Fisher’s 

criterion formula described in equation (5).  It is a 

straightforward method that overcomes both the 

singularity and instability of the within-class scatter 

matrix wS  when LDA is applied directly in limited 

sample and high dimensional problems.  MLDA also 

avoids the computational costs inherent to the 

aforementioned shrinkage processes. 

 

5. Experiments 
 

In order to evaluate the effectiveness of the MLDA 

method on face recognition, comparisons with the 

standard LDA (when possible), Fisherfaces, CLDA, 

DLDA, and YLDA, were performed using the well-

known Olivetti-Oracle Research Lab face database 

(ORL) and the FERET database. 

A simple Euclidean distance classifier was used to 

perform classification in the projective feature space, 

analogously to the other approaches we investigated.  

Each experiment was repeated 25 times using several 

features.  Distinct training and test sets were randomly 

drawn, and the mean and standard deviation of the 

recognition rate were calculated.  The classification of 

the ORL 40 subjects was computed using for each 

individual 5 images to train and 5 images to test.  In the 

FERET database with 200 subjects, the training and 

test sets were respectively composed of 3 and 1 frontal 

images. 

For implementation convenience, the ORL face 

images were resized to 32x32 pixels, representing a 

recognition problem where the within-class scatter 

matrix is singular, that is the total number of training 

observations was 200=N  and the dimensionality of 

the original images was 1024=n .  The FERET images 

were resized to 16x16 pixels in order to pose an 

alternative pattern recognition problem where the 

within-class scatter matrix is non-singular but poorly 

estimated, i.e. 600=N  and 256=n . 

To determine the number of principal components 

to be retained in the intermediate step of Fisherfaces, 

experimental analyses were carried out based on the 

best classification accuracy of several PCA features in 

between the corresponding interval ),( gNg − .  The 

best results were obtained when the ORL and FERET 

original images were first reduced respectively to 60 

and 200 PCA features. 

For the purpose of establishing the number of the 

YLDA best discriminant vectors derived from the 

within-scatter matrix eigenvectors space, we used for 

the ORL database the eigenvectors corresponding to 

the remaining 10 largest eigenvalues, as suggested by 

Yang and Yang’s work [14].  For the FERET database, 

the eigenvectors corresponding to the remaining 20 

largest eigenvectors were sufficient to determine the 

respective YLDA best discriminant vectors.  We 

assumed that an eigenvalue λ  is positive if 

.0)( >λround  

 

6. Results 
 

Tables 1 and 2 present the maximum test average 

recognition rates (with standard deviations) of the ORL 

and FERET databases over the corresponding number 

of PCA (when applicable) and LDA features. 

Since the ORL face database contains only 40 

subjects to be discriminated, the LDA features of the 

Fisherfaces, CLDA, DLDA, and MLDA were limited 

to 39 components.  Using the remaining 10 largest 

eigenvalues, the number of YLDA discriminant vectors 

could be extended from 39 to 49 LDA features.  Also, 

the notation “-” in the standard LDA (LDA) row of the 

Table 1 indicates that the within-class scatter matrix 

was singular and consequently the standard LDA could 

not be calculated. 
 

Table 1. ORL (32x32 pixels) results. 

 
Table 1 shows that the maximum uncertainty LDA 

(MLDA) led to higher classification accuracies than the 

Method PCA LDA Recognition Rate

Fisherfaces 60 39 94.9% (1.9%)

YLDA 199 45 96.1% (1.4%)

LDA - - -

CLDA 39 95.4% (1.5%)

DLDA 39 94.9% (1.6%)

MLDA 39 95.8% (1.6%)

Features



other one-stage approaches.  The overall best 

classification result was reached by Yang and Yang’s 

approach (YLDA) – 96.1% (1.4%) – which was not 

significantly greater than the MLDA one – 95.8% 

(1.6%).  However, the YLDA used a much larger two-

stage linear transformation matrix compared to the one-

stage methods.  In terms of how sensitive the MLDA 

results were to the choice of the training and test sets, it 

is fair to say that the MLDA standard deviations were 

similar to the other methods. 

Table 2 presents the results of the FERET database.  

In this application, the within-class scatter was non-

singular but poorly estimated and the standard LDA 

(LDA) could be applied directly on the face images.  

As can be seen from Table 2, the overall best 

classification result was achieved by MLDA – 95.4% 

(1.4%) – using remarkably only 10 features.  Again, 

regarding the standard deviations, MLDA showed to be 

as sensitive to the choice of the training and test sets as 

the other approaches investigated. 
 

Table 2. FERET (16x16 pixels) results. 

 

7. Memory Issues 
 

According to Samal and Iyengar [10], images with 

32x32 pixels and at least 4 bits per pixel are sufficient 

for face identification problems.  However, it is 

possible that memory computation problems would 

arise when scatter matrices larger than 1024x1024 

elements are used directly in the optimisation of the 

Fisher’s criterion described in equation (5). 

In fact, the PCA intermediate step that has been 

applied to project images from the original space into 

the face subspace has made not only some of the 

aforementioned LDA-based approaches mathematically 

feasible in limited sample size and high-dimensional 

classification problems, but also has allowed the 

within-class wS  and between-class bS  scatter matrices 

to be calculable in computers with a normal memory 

size. 

In the experiments described previously, our 

attention was focused on evaluating the new LDA-

based performance in situations where the within-class 

scatter matrix was either singular or poorly estimated, 

without a PCA intermediate step of dimensionality 

reduction.  However, it would be important to assess 

the proposed method in higher resolution images where 

the PCA intermediate step is made necessary to avoid 

such memory computation difficulties. 

Thus, we discuss here further experimental results 

that evaluate the previous top 2 MLDA and YLDA 

approaches when the standard resolutions of 64x64 

pixels and 96x64 pixels were used respectively for the 

ORL and FERET face images.  Analogous to the 

previous experiments, the classification of the ORL 40 

subjects was computed using in total 200 examples for 

training (5 images per subject) and the remaining 200 

examples (5 images per subject) for testing.  In the 

FERET database with 200 subjects, the total number of 

training and test sets were respectively composed of 

600 (3 images per subject) and 200 (1 image per 

subject) images.  Following the Yang and Yang’s work 

[14], we used again the eigenvectors corresponding to 

the remaining 10 largest eigenvalues to extend the 

number of YLDA discriminant vectors.  For the 

FERET database, the eigenvectors corresponding to the 

remaining 25 largest eigenvalues were sufficient to 

determine the respective YLDA best discriminant 

vectors. 

As described previously, the total number of 

principal components to retain for a best LDA 

performance should be equal to the rank of the total 

scatter matrix bwT SSS +=  [14].  When the total 

number of training examples N  is less than the 

dimension of the original feature space n , the rank of 

TS  can be calculated as 
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)1()(

)()()(

−≤

−+−≤

+≤

N

ggN

SrankSrankSrank bwT

 

(18) 

In order to avoid the high memory rank computation 

of such large scatter matrices and because both MLDA 

and YLDA deal with the singularity of the within-class 

scatter matrix, we used equation (18) to assume that the 

rank of TS  in both applications was 1−N .  Therefore, 

we first projected the original ORL and FERET images 

into the corresponding 199 and 599 largest principal 

components and secondly we applied the MLDA and 

YLDA feature classification methods. 

Table 3 shows the recognition rates (with standard 

deviations) of the ORL and FERET datasets over the 

corresponding number of PCA and LDA features.  As 

can be seen, likewise the previous experiments, the best 

classification results for the ORL dataset was achieved 

by the Yang and Yang’s approach (YLDA), which was 

Method PCA LDA Recognition Rate

Fisherfaces 200 20 91.5% (1.9%)

YLDA 256 92 94.7% (1.4%)

LDA 20 86.2% (1.9%)

CLDA 20 86.2% (1.9%)

DLDA 20 94.5% (1.3%)

MLDA 10 95.4% (1.4%)

Features



slightly better than the MLDA one.  However, the 

YLDA used a larger two-stage linear transformation 

matrix.  In the FERET application, where the higher 

resolution images improved the classification results of 

both YLDA and MLDA approaches, the MLDA 

achieved clearly the best classification performance, 

using impressively only 10 LDA features after the PCA 

dimensionality reduction. 
 

Table 3. ORL and FERET results. 

 

8. Conclusions 
 

In this paper, we extended the idea of the maximum 

entropy selection method used in Bayesian classifiers 

to overcome not only the singularity but also the 

instability of the LDA within-class scatter matrix in 

limited sample, high dimensional problems. 

The new LDA-based method is a straightforward 

approach that considers the issue of stabilising the ill 

posed or poorly estimated within-class scatter matrix 

with a multiple of the identity matrix.  Although such 

modification has been used before, our method is based 

on selecting the largest and consequently most 

informative dispersions. Therefore, it avoids the 

computational costs inherent to the commonly used 

optimisation processes, resulting in a simple and 

efficient implementation for the maximisation of the 

Fisher’s criterion. 

Experiments were carried out to evaluate this 

approach on face recognition, using the ORL and 

FERET databases.  Comparisons with similar methods, 

such as Fisherfaces [1, 16], Chen et al.’s [2], Yu and 

Yang’s [15], and Yang and Yang’s [13, 14] LDA-

based methods, were made.  In both databases, our 

method improved the LDA classification performance 

with or without a PCA intermediate step and using less 

linear discriminant features.  Regarding the sensitivity 

to the choice of the training and test sets, the maximum 

uncertainty LDA (MLDA) gave a similar performance 

to the compared approaches. 

We have shown that in limited sample size and high 

dimensional problems where the within-class scatter 

matrix is singular or poorly estimated, the Fisher’s 

linear basis found by minimising a more difficult but 

appropriate “inflated” within-class scatter matrix would 

also minimise a less reliable “shrivelled” within-class 

estimate.  We believe that such LDA modification 

might be suitable for solving not only the singularity 

and instability issues of the linear Fisher methods, but 

also the Fisher discriminant analysis with kernels where 

the non-linear mapping of the original space to a higher 

dimensional feature space would commonly lead to a 

ill-posed within class scatter matrix. 
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Dataset

Method PCA LDA Recognition Rate

ORL

YLDA 199 46 96.1% (1.5%)

MLDA 199 39 95.7% (1.5%)

FERET

YLDA 599 220 95.5% (1.2%)

MLDA 599 10 97.6% (1.1%)

Features


