A Statistical Discriminant M odel for Face I nterpretation and Reconstruction

Edson C. Kitarfi Carlos E. Thomdzand Duncan F. Gilliés
!Department of Electrical Engineering, Centro Unisigdrio da FEI, S&o Paulo, Brazil
“Department of Computing, Imperial College, LonddkK,
Yekitani,cet}@fei.edu.hrd.gillies@imperial.ac.uk

Abstract Discriminant Model (SDM), to interpret and recon-
struct face images. Analogously to the Cootesl.et a
Multivariate statistical approaches have played an approaches [1 — 4], SDM requires a previous aligiime
important role of recognising face images and clsara  Of all the images to a common template to minimise
terizing their differences. In this paper, we imtuze variations that are not necessarily related teedsffices
the idea of using a two-stage separating hyperjan between the faces. However, instead of using land-
here called Statistical Discriminant Model (SDMy, t marks or annotations on the images, SDM is based on
interpret and reconstruct face images. Analogotsly the idea of using PCA to reduce the dimensionality
the well-known Active Appearance Model proposed bythe original images and a maximum uncertainty linea
Cootes et. al, SDM requires a previous alignmeratllof  classifier (MLDA) [8] to characterise the most dis-
the images to a common template to minimise varia- criminant differences between the samples of images
tions that are not necessarily related to differenc The remainder of this paper is divided as follows.
between the faces. However, instead of using land-In section 2, we briefly review PCA and highlighs i
marks or annotations on the images, SDM is based onimportance on reducing the high dimensionalityaufef
the idea of using PCA to reduce the dimensionality images. Section 3 describes the standard linear
the original images and a maximum uncertainty linea discriminant analysis (LDA) and states the readons
classifier (MLDA) to characterise the most discHmi using a maximum uncertainty version of this apphoac
nant changes between the groups of images. The exto perform the face experiments required. Theresti
perimental results based on frontal face images-ind tjon of the separating hyper-plane and the impleeen
cate that the SDM approach provides an intuitive in  tion of the Statistical Discriminant Model are deised
terpretation of the differences between groupsomec i Section 4. In section 5, we present experimienta
structing characteristics that are very subjectiire results of the PCA and SDM approaches on a face da-

human beings, such as beauty and happiness. tabase maintained by the Department of Electrical E
] gineering at FEI. This section includes reconsioac
1. Introduction experiments of face images using the SDM approach

proposed. In the last section, section 6, the pape-

The most successful statistical models for vismal i cludes with a short summary of the findings of this
terpretation of face images have been based ogiPrin study and future directions.
pal Component Analysis (PCA) [1, 3, 10]. These ap-
proaches have used as features either shapest®-or 2 Principal Component Analysis (PCA)
tures [10] alone, or a combination of both [1]. fam
tunately, however, even in the PCA approach based 0 pca is a feature extraction procedure concerned
a combination of features, the sources of the sape yjth explaining the covariance structure of a skt o
and textures’ variations have to be isolated ireod  yariables through a small number of linear combina-
extract and interpret the most expressive diffezerin tions of these variables. It is a well-known stigal
the training samples. For instance, in the wedi  technique that has been used in several image mecog
Active Appearance Model proposed by Cootes et. al.tion problems, especially for dimensionality redoit
[1] the shape model is dissociate from the texture o comprehensive description of this multivariatatist
model and a manual annotation of landmarks is recesijca| analysis method can be found in [6].
sary to perform the statistical analysis. Let us consider the face recognition problem as an

In this paper, we introduce the idea of using &two example to illustrate the main idea of the PCA.aity
stage separating hyper-plane, here called Statistic



image recognition, and particularly in face recdtigni
an input image withn pixels can be treated as a point

in ann-dimensional space called the image space. The

coordinates of this point represent the valuesawhe
pixel of the image and form a vector
X" :[xl,xz,...,xn] obtained by concatenating the rows
(or columns) of the image matrix. It is well-knowrat
well-framed face images are highly redundant ndy on
owing to the fact that the image intensities ofaadpnt
pixels are often correlated but also because eneiy
vidual has one mouth, one nose, two eyes, etc.a As
consequence, an input image withpixels can be pro-
jected onto a lower dimensional space without §iigni
cant loss of information.

Let an N xn training set matrixX be composed
of N input face images wittm pixels. This means
that each column of matriX represents the values of
a particular pixel observed all over tiNe images. Let
this data matrix X have covariance matrixs with
respectively ® and A eigenvector and eigenvalue
matrices, that is,

PTSP=A. )
It is a proven result that the set of (m<n) eigen-
vectors of S, which corresponds to then largest ei-

genvalues, minimises the mean square reconstructioVnere N

error over all choices ofn orthonormal basis vectors
[6]. Such a set of eigenvectors that defines a new
correlated coordinate system for the training satrion

X is known as the principal components. In the con-
text of face recognition, thosé,.,components are
frequently called eigenfaces [10].

Therefore, althougm variables are required to re-
produce the total variability (or information) ofiet
sample X, much of this variability can be accounted
for by a smaller numbem of principal components.
That is, them principal components can then replace
the initial n variables and the original data set, consist-
ing of N measurements on variables, is reduced to
a data set consisting d measurements om princi-
pal components.

3. Maximum Uncertainty LDA (MLDA)

The primary purpose of the Linear Discriminant
Analysis, or simply LDA, is to separate samples of
distinct groups by maximising their between-class
separability while minimising their within-class nra
ability. Although LDA does not assume that the gpop
lations of the distinct groups are normally disitdd, it
assumes implicitly that the true covariance masriot

each class are equal because the same withinstlass
ter matrix is used for all the classes considered.

Let the between-class scatter matfx be defined
as

9
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and the within-class scatter mati$, be defined as
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where x; ; is then-dimensional patternj from class
7%, N; is the number of training patterns from class
7¢, and g is the total number of classes or groups.
The vectorx, and matrixS are respectively the unbi-
ased sample mean and sample covariance matrix of
class7; [6]. The grand mean vector is given by
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is the total number of samples, that is,
N =Ny +Ny+---+Ng. It is important to note that
the within-class scatter matri$, defined in equation
(3) is essentially the standard pooled covarianatixn
S, multiplied by the scala(N - g) , where S, can be
written as

- (N =D)S + (N =D)S, +---+(Ng — 1S,
N-g :
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The main objective of LDA is to find a projection
matrix By, that maximizes the ratio of the determinant
of the between-class scatter matrix to the deteamntin
of the within-class scatter matrix (Fisher’s ciiba),
that is,

PTSP

Pya = argmax‘PTSWP‘ . (6)

P

The Fisher’'s criterion described in equation (6) is
maximised when the projection matri®,, is com-
posed of the eigenvectors of,'S, with at most
(g -1 nonzero corresponding eigenvalues [5]. This is
the standard LDA procedure.

However, the performance of the standard LDA can



be seriously degraded if there is only a limitedhber
of total training observation®N compared to the di-
mension of the feature space Since the within-class
scatter matrixS,, is a function of(N —g) or less line-
arly independent vectors, its rank (8l —g oy less.
Therefore, S,, is a singular matrix ifN is less than
(n+g), or, analogously, might be unstableNf is not
at least five to ten timegn+g [7].

To avoid the aforementioned critical issues of the
standard LDA in limited sample and high dimensional
problems, we have calculately, by using a maxi-
mum uncertainty LDA-based approach (MLDA) that
considers the issue of stabilising tBg estimate with
a multiple of the identity matrix [8, 9]. In a plieus
study [8] with application to the face recognitiprob-
lem, Thomaz and Gillies showed that the MLDA ap-
proach improved the LDA classification performance
with or without a PCA intermediate step and usigsl
linear discriminant features [8].

The MLDA algorithm can be described as follows:

i.Find the ® eigenvectors and\ eigenvalues ofS,,
whereS, =S, /[N -g];

ii. Calculate theS,, average eigenvalug , that is,
1 traceg(S,)
A==} = ~"P7

n; ! n

iii.Form a new matrix of eigenvalues based on thle f
lowing largest dispersion values

; (7a)

N = diagimax(;,A),....max(,,A)]; (7b)

iv.Form the modified within-class scatter matrix

Sy =Sp(N=-g) = (@A OT)(N - Q). (7¢)
The maximum uncertainty LDA (MLDA) is con-
structed by replacing,, with S, in the Fisher’s crite-
rion formula described in equation (6). It is them
the idea [8] that in limited sample size and higheh-
sional problems where the within-class scatter imatr
singular or poorly estimated, the Fisher’s lineasib
found by minimising a more difficult but appropeat
“inflated” within-class scatter matrix would alsani
mise a less reliable “shrivelled” within-class esite.

4. Statistical Discriminant Model (SDM)

The Statistical Discriminant Model proposed in this
work is essentially a two-stage PCA+MLDA linear

classifier that reduces the dimensionality of thigioal
images and extracts discriminant information from i
ages.

In order to estimate the SDM separating hyper-
plane, we use training examples and their corredpon
ing labels to construct the classifier. Firstairing set
is selected and the average image vector of atréie
ing images is calculated and subtracted from emach
dimensional vector. Then the training matrix com-
posed of zero mean image vectors is used as ioput t
compute the PCA transformation matrix. The columns
of this n x m transformation matrix are eigenvectors,
not necessarily in eigenvalues descending ordee W
have retained all the PCA eigenvectors with nom-zer
eigenvalues, that ism= N -1, to reproduce the total
variability of the samples with no loss of inforriet
The zero mean image vectors are projected on the pr
cipal components and reduced rtedimensional vec-
tors representing the most expressive featuresadf e
one of then-dimensional image vector. Afterwards,
this N x m data matrix is used as input to calculate
the MLDA discriminant eigenvector, as described in
the previous section. Since in this work we hare |
ited ourselves to two-group classification problems
there is only one MLDA discriminant eigenvectorhel
most discriminant feature of each one of the
dimensional vectors is obtained by multiplying the
X m most expressive features matrix by the x 1
MLDA linear discriminant eigenvector. Thus, thé-in
tial training set of face images consisting Mf meas-
urements onn variables, is reduced to a data set con-
sisting of N measurements on onlly most discrimi-
nant feature.

Once the two-stage SDM classifier has been con-
structed, we can move along its corresponding proje
tion vector and extract the discriminant differesice
captured by the classifier. Any point on the discr
nant feature space can be converted to its comespo
ing n-dimensional image vector by simply: (1) multi-
plying that particular point by the transpose & tor-
responding linear discriminant vector previouslyneo
puted; (2) multiplying itsn most expressive features by
the transpose of the principal components matrixt a
(3) adding the average image calculated in theitrgi
stage to then-dimensional image vector. Therefore,
assuming that the spreads of the classes follows-G
sian distribution and applying limits to the vaianof
each group, such as2sd, where sd is the standard
deviation of each group, we can move along the SDM
most discriminant features and map the results back
into the image domain.
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Figure 1. Samples of the female versus male (ahanesmiling versus smiling training sets (b).

5. Experimental Results have composed the female/male training set of &$- fr
tal female images and 49 frontal male images. tik®r

We have used frontal images of a face databasesmiling/non-smiling experiments, we have used tbe 4
maintained by the Department of Electrical Engineer frontal male images previously selected and theirec
ing of FEI to carry out the experiments. This 8age  sponding frontal smiling images. All faces are mhai
contains a set of face images taken between Jube 20 represented by subjects between 19 and 30 years old
and March 2006 at the Artificial Intelligence Labor  With distinct appearance, hairstyle, and adornigurge
tory in S&o Bernardo do Campo, with 14 images for 1 shows some examples of these two training sets se
each of 118 individuals — a total of 1652 imageall lected.
images are colourful and taken against a white ho-
mogenous background in an upright frontal position 5.1. PCA Results
with profile rotation of up to about 180 degreecale
might vary about 10% and the original size of each In this section, we describe the most expressiae fe
image is 640x480 pixels. tures captured by PCA. As the average face image i
To minimise image variations that are not necessar-an n-dimensional point = 4096 that retains all
ily related to differences between the faces, vignatl common features from the training sets, we could us
first all the frontal face images to a common teatgpl  this point to understand what happens statisticelign
so that the pixel-wise features extracted fromithe we move along the principal components and recon-
ages correspond roughly to the same location aalbss struct the respective coordinates on the imageespac
subjects. In this manual alignment, we have raigom Analogously to the works by Cootes et al. [1 —wi4,
chosen the frontal image of a subject as template a have reconstructed the new average face images by
the directions of the eyes and nose as a locagifam-r ~ changing each principal component separately using
ence. For implementation convenience, all thetélon the limits of i\/j%, where 4, are the corresponding
images were then cropped to the size of 64x64 pixel largest eigenvalues.
and converted to 8-bit grey scale. Figure 2 illustrates these transformations on itst f
We have carried the following two-group statistical three most expressive principal components usiag th
analyses: female versus male experiments, and nonfemale/male training set. As can be seen, thegdia-
smiling versus smiling experiments. The idea & th cipal component (on the top) captures essentially t
first discriminant experiment is to evaluate thatisti-  variations in the illumination and gender of thaining
cal approaches on a discriminant task where tHereif ~samples. The second principal component (middie),
ences between the groups are evident. In conthest, turn, models variations related to the grey-levielhe
second experiment, i.e. non-smiling versus smiling faces and hair, but it is not clear which speoifiria-
samples, poses an alternative analysis where #rere tion this component is actually capturing. Thet las
subtle differences between the groups. Sincetine-n  principal component considered, the third component
ber of female images is limited and equal to 49, we (bottom), models mainly the size of the head of the
training samples. It is important to note thattaes fe-
male/male training set has a very clear separdi®n

UAll these images are available upon request (cgit@iu.br).
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Figure 2. PCA results using the female/male trejrset.

tween the groups, the principal components haveé kep As we should expect, these experimental results
this separation and when we move along each pahcip show that PCA captures features that have a canside
component axis we can see this major difference be-able variation between all training samples, like
tween the samples, even though subtly, such asein t changes in illumination, gender, and head shapswy-H
third principal component illustrated. ever, if we need to identify specific changes saslthe
Figure 3 presents the three most expressive variavariation in facial expression solely, PCA has not
tions captured by PCA using the non-smiling/smiling proved to be a useful solution for this problens oan
training set, which is composed of male images.only be seen in Figure 3, although the third principgahe
Analogously to the female/male experiments, thst fir ponent (bottom) models some facial expression varia
principal component (on the top) captures esséntial tion, this specific variation has been capturedther
the changes in illumination, the second princigahe principal components as well including other image
ponent (middle) models variations particularly et  artefacts. Likewise, as Figure 2 illustrates, @lih the
head shape, and the third component (bottom) eeptur first principal component (top) models gender varia
variations in the facial expression among others. tion, other changes have been modelled concurtently

_3\/Z < | —ﬁ +\/Z | >+3\/Z

Figure 3. PCA results using the non-smiling/sngiliraining set (male images only).
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Figure 4. SDM results using the female/male tregrset.

such as the variation in illumination. In fact, evhwe from the male ones, such as the size of the eyehrow
consider a whole grey-level model without landmarks nose and mouth, without enhancing other image arte-
to perform the PCA analysis, there is no guaratitae  facts.

a single principal component will capture a specifi Figure 5 shows the SDM most discriminant features
variation alone, no matter how discriminant thatiara  for the facial expression experiments. Analogously
tion might be. the gender experiments, Figure 5 displays the image
regions captured by the SDM classifier that change
5.2. SDM Results when we move from one side (left, smiling) of the d

viding hyper-plane to the other (right, non-smijing

As described earlier, in order to estimate the SDM following limits to the standard deviationt2sd) of
separating hyperplane, we have used the female/mal@ach sample group. As can be seen, the SDM hyper-
and non-smiling/smiling training sets previously- se plane effectively extracts the group differencémve
lected and their corresponding labels to constiiiet  ing exactly what we should expect intuitively fraan
classifier. Since in these experiments we havédin  face image when someone changes their expression
ourselves to two-group classification problemsrehe from smiling to non-smiling. In fact, it is poskibto
only one SDM discriminant eigenvector. Therefore, note that the SDM most discriminant direction hes-p
assuming that the spreads of the classes followus G dicted a facial expression not necessarily presenar
sian distribution and applying limits to the vaganof corresponding smiling/non-smiling training set,ttrg
each group, such as2sd, where ‘sd’ is the standard the “definitely non-smiling” or may be “anger” stat
deviation of each group, we can move along the SDM represented by the image +2sd in Figure 5.
most discriminant features and map the results back Analogously to the PCA experiments, all SDM re-
into the image domain for visual analysis. constructions have been made using the average face

Figure 6 presents the SDM most discriminant fea- image of the corresponding training sets. Howeiter,
tures for the gender experiments. It displaysirtiege is possible to project any face image on the SDa4 fe
regions captured by the SDM approach that changeture space, move along its corresponding most dis-
when we move from one side (left, male) of thedkvi criminant features, and map the changes back to the
ing hyper-plane to the other (right, female), faliog original image space. Figure 6 shows these experm
limits to the standard deviationt2 sd) of each sample tal results when we move an example image along the
group. As can be seen, the SDM hyper-plane effec-male/female (Figure 6a) and smiling/non-smilinggéFi
tively extracts the group differences, showing diea  ure 6b) hyper-planes previously calculated. As lpan
the features that mainly distinct the female sample seen in Figure 6a, the most discriminant featuees b

-2sd -1sd Mean +1sd +2sd

Figure 5. SDM results using the smiling/non-sngltraining set.



(b)

Figure 6. SDM results when we move an example évzdgng the male/female (a) and smiling/non-smi(lmghyper-planes.

tween a male and female face images have been incorface images but also face images with different pro
porated on the example image when we move it to thefiles. Further work is being undertaken to invgaste
male side of the dividing hyper-plane, such as the this possibility.

thickening of the lips, nose, and eyebrows. Inticst,

since the example chosen is from a woman, almost noAcknoWIedgments

facial changes occurs when we move the same example

to the other side of the hyper-plane, that is,i® fe-  The authors would like to thank Leo Leonel de Qfze
male side. Also, according to Figure 6b, it isgioe  Junior for acquiring and normalizing the FEI datba
to see that the SDM linear classifier has incorfmta  under the grant FEI-PBIC 32-05.
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