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Abstract

Difficulties in learning to read may have a number of
causes and children tend to experience on the phonolog-
ical route the most common disturbance in this cognitive
task. Using two sample groups of children with and with-
out reading difficulties and their corresponding EEG sig-
nals captured during the reading processing, we describe in
this work a set of techniques that investigates such distur-
bance by generating whole brain mappings based on the en-
tropy of each EEG electrode and non-supervised and super-
vised multivariate statistical analyses. Our experimental re-
sults have clearly showed specific neural organizations well
suited to interpreting the word/phrase reading processing in
these children. We believe that these techniques might be-
come an effective computational tool in helping the diag-
nostic process of children with learning disabilities.

1. Introduction

Difficulties in learning to read may have a biological
cause, the neural connections may not organize themselves
accordingly during the neurological development since the
fetal stage till the first childhood due to both genetic [52,
1, 35, 42, 17, 51, 38, 43, 15, 19] and environmental fac-
tors, such as malnutrition [39, 21, 41], preterm birth [31],
mother depression [21], stress suffered by the mother dur-
ing pregnancy [24, 41], use of drugs [41, 51, 8], among oth-
ers.

These factors may disrupt one or both of the principal
neural circuits appointed nowadays as underlying human
reading ability according to the dual-route model [5, 7, 23,
37, 6, 53]. Figure 1 illustrates the brain areas involved on the
dual-route model of reading. One circuit involves occipto-

temporal connections and is described as the lexical route,
the other involves parieto-frontal connections and is de-
scribed as the phonological route [5, 7, 6], being the distur-
bance of each of these routes named as surface and phono-
logical dyslexia respectively [23, 37, 53]. In other words,
the first route translates the visual information transmitted
by the string of letters of each word, processed by tempo-
ral neurons grouped in the previous identified word-form
area directly in its meaning through the area of Wernicke,
named from a neurologist. Neurons from this area estab-
lish the connection from the string of letters of each word to
multiple brain regions depending on the word meaning and
semantic field. The second route converts each grapheme or
group of grapheme (syllable), identified by parietal neurons,
to the sound it represents, what is operated by frontal neu-
rons, to construct the sound of the word and finally access
its meaning, again through Wernicke’s area. Children may
experiment one or both of these routes disturbance, but what
is more frequent to observe is the difficulty children expe-
rience in the grapheme-phoneme conversation involved on
the phonological route.

In this context, this work uses the Distributed Intelligent
Processing System (DIPS) model [48, 11, 9] to process the
EEG signal aiming to summarize the information provided
by each electrode from the conventional 10/20 system [32]
and analyse the reading processing in children. DIPS was
first developed on the field of Artificial Intelligence in order
to formalize systems composed of multiple agents, where
each one of these agents could specialize itself in the pro-
cessing of some specific kind of information and could par-
ticipate on various different associations with other agents
to solve complex tasks [4, 12, 36, 45, 46, 55].

More specifically, assuming that the brain can be under-
stood as a DIPS model and based on the neural efficiency
theory [22], we describe and implement here a technique of
brain mapping that has been used to investigate the associ-



Figure 1. Brain areas involved on the dual-
route model of reading.

ations among the agents of the neural system during cog-
nitive tasks, illustrating these associations by means of a
non-supervised multivariate statistical technique [16, 48].
Additionally, as a new contribution, we extend in this arti-
cle the use of this methodology to investigate the efficiency
of a supervised multivariate statistical technique in discrim-
inating between the neural organization of a normal read-
ing group and a group having learning difficulties possibly
caused by neuronal disorder such as dyslexia. Our exper-
imental results have showed specific neural organizations
well suited to interpreting the reading processing in chil-
dren.

The paper is organized as follows. Next, in section 2,
we provide information about the sample groups selected to
study the reading processing in children based on a public
school in São Paulo, Brazil. Then, section 3 describes the
technique of EEG summarization and the non-supervised
and supervised multivariate methods used to generate the
whole brain mappings for interpreting the reading experi-
ments. All the results of the experiments carried out in this
work have been explained in section 4. Finally, in section 5,
we conclude the paper, arguing about some findings high-
lighted in this work.

2. Material

Two sample groups of children were selected from a
public school of the city of Mogi das Cruzes (São Paulo,
Brazil), having (DL) and having not (CO) reading difficulty
complains by their teachers.

A specific anamnese, which involved the relatives of the
children, was used to investigate the possible neurological
disturbance of the DL sample group. This anamnese con-
siders environmental factors that could impair brain de-
velopment from the fetal age until early childhood. The

DL group particularly exhibited statistical significant occur-
rences such as motherly high stress index during pregnancy,
use of tobacco and alcohol, low birth weight, among others,
suggesting the aforementioned difficulties in reading by this
group due to possibly neurological disturbances.

Both DL and CO sample groups have been composed of
10 children (5 boys, 5 girls). The age of the DL children has
varied from 10 to 14 and of the CO children from 8 to 12.
This age difference occurred owing to the school gap of DL
children. Both groups had to solve a 6-word or -phrase read-
ing task where they have to select an image (clicking on it)
out of five that best describes the corresponding meaning of
the word or phrase presented as written language above the
image options. Figure 2 shows an example of a word read-
ing task carried out in the experiments.

To demand from children an equivalent cognitive effort,
the word or phrase reading task has been selected according
to each child development - those who could read words
without any error did the phrase task, whereas those who
could not read phrases did the word one.

3. Methods

Children solved tasks while their EEG signals were reg-
istered using 20 electrodes placed according to the 10/20
system [32], as illustrated in Figure 3. Statistical analysis of
their performance and the recorded EEG signals provided
the data to investigate the aforementioned cognitive func-
tion, generating whole brain mappings based on the entropy
of each EEG electrode [16, 48, 47] and on non-supervised
and supervised multivariate techniques. The technique of
EEG summarization is not new and has been successfully
applied to study neural plasticity [16], arithmetic brain pro-
cessing [48], dermatological treatment satisfaction [2], elec-
tion decision making [11], DIPS model [9] and, more re-
cently, moral dilemma [10] and medical diagnosis [44].

3.1. EEG signals summarization

EEG records the electrical field potentials generated by
the activation of sets of neurons or source signals sl lo-
cated in several distinct cortical areas. The EEG data di(t)
recorded at a single electrode i represents a weighted lin-
ear sum of underlying source signals, that is:

di(t) =
k∑

i=1

wisl(t). (1)

The weights wi are determined by the distance of the cor-
tical source domains si from the electrode pair, the orienta-
tion of the cortical patch relative to the electrode pair lo-
cations, and the electrical properties of intervening tissues.
The number k of active sources is determined by the task
being currently processed by the brain.



Figure 2. An example of a word reading task carried out in the experiments. Each child has to select
an image (clicking on it) out of the five shown that best describes the corresponding meaning of the
word presented as written language above the image options.

Figure 3. The position of each one of the
20 electrodes according to the 10/20 conven-
tional system [32]. The letters F, T, C, P and O
stand for frontal, temporal, central, parietal,
and occipital lobes, respectively. The mark-
ers A1 and A2 are used as references to the
midline of the brain.

The statistical complexity of the investigation increases
as the number of EEG and behavioral variables increase as
well. Therefore, it is necessary to summarize the informa-
tion provided by each electrode ei about all sources sl into a
single variable to make statistical analysis amenable. Since
EEG data are assumed to be a weighted sum of the electri-
cal activity of the different sources, correlation analysis of
the EEG activity di(t) recorded by the different electrodes
ei may be used to calculate the entropy information h(ei)
provided by each electrode ei about all k involved sources
si into a single variable [16, 48].

The rationality of this process can be briefly explained as
follows. Given that data di(t) and dj(t), furnished by two
electrodes ei and ej , provide equivalent information about
sources si then the absolute value of correlation coefficient

ci,j calculated for di(t) and dj(t) will approach 1, other-
wise it will approach 0. The highest uncertainty about the
information equivalence provided by ei and ej occurs when
the correlation strength ci,j approaches 0.5.

Therefore, in the same line of reasoning used by Shan-
non [50] to define the amount of information provided by a
random variable, it is proposed that the informational equiv-
alence h(ci, cj) of di(t) and dj(t) furnished by ei and ej

is the expected value E(I(ci,j)) of the information I(ci,j)
provided by ci,j [16, 48, 47]. However, because ci,j may
theoretically assume values equal to zero, instead of using
Shannon’s logarithm function, the h(ci,j) estimate has been
calculated by:

h(ci,j) = E(I(ci,j))
= −[ci,j log2(ci,j) + (1− ci,j)log2(1− ci,j)].

(2)

Now, given q electrodes and the average correlation co-
efficient

ci =

∑q−1
j=1 ci,j

q − 1
, (3)

the informational equivalence measured by ci can be writ-
ten by the following formula

h(ci) = −[cilog2(ci) + (1− ci)log2(1− ci)], (4)

which calculates the information provided by di(t) concern-
ing that provided by all other dj(t). Thus,

h(ei) =
q−1∑
j=1

[h(c̄i)− h(ci,j)] (5)

computes the information provided by di(t) recorded by ei

about the sources si. In short, in a cognitive task solving,
we shall expect:



Figure 4. An illustrative example of an EEG
summarization calculated in the experiments
for the C3 electrode. All the calculations have
been made using the previous 2 seconds im-
mediately before the decision making.

a) if ci,j = 1 for all ej then ci = 1, h(ci,j) = h(ci) for
all ej , and consequently h(ei) = 0. This indicates that di(t)
and the corresponding ei do not provide any additional in-
formation about the sources si;

b) if ci,j = 0 for half of ej and ci,j = 1 for the other half,
then ci = 0.5, h(ci) = 1, h(ci,j) = 0 for all ej , and con-
sequently h(ei) is maximum and equal to 1. This indicates
that di(t) and the corresponding ei discriminate two differ-
ent groups of electrodes providing information about dis-
tinct groups of sources si, and

c) for all other conditions, i.e. 0 < h(ei) < 1, h(ei)
quantifies the information provided by di(t) about the
sources si .

Figure 4 shows an illustrative example of an EEG sum-
marization calculated in the experiments for the C3 elec-
trode.

3.2. Factor Analysis

We have used Factor Analysis (FA), a well-known mul-
tivariate statistical technique, to describe the association
between the entropy values of the electrodes in a non-
supervised way. The main idea behind FA is to disclose the
correlation relationships among the original variables using
a few unobservable random ones, called common factors, to
adequately represent the data [33].

In particular, let an N×n data matrix X be composed of
N input signals (or trials) with n variables (or electrodes).
This means that each column of matrix X represents the
EEG summarization of a particular electrode observed all

over the N trials. Let this data matrix X have sample corre-
lation matrix R with respectively P and Λ eigenvector and
eigenvalue matrices, that is,

PT RP = Λ. (6)

It is a proven result that the set of m (m ≤ n) eigen-
vectors of R, which corresponds to the m largest eigenval-
ues, minimizes the mean square reconstruction error over
all choices of m orthonormal basis vectors [18]. Such a set
of eigenvectors scaled by the square root of the correspond-
ing eigenvalues [33] and calculated as

L̂ = [
√

λ1p1,
√

λ2p2, ...,
√

λmpm] (7)

is known as the factor loadings of the data matrix X esti-
mated by the principal component method.

The estimated factor loadings L̂ of X can be rotated in
order to improve the understanding of the factors, specially
if R deviates significantly from a diagonal matrix. If L̂ is
the n×m matrix of estimated factor loadings then

F̂ = L̂T (8)

is a n×m matrix of rotated estimated factor loadings, where
T is assumed to be an orthonormal m × m rotation matrix,
that is, TTT = TT T = I .

Ideally, we would like to see a pattern of loadings where
each subset of electrodes is highly represented by a single
factor and has negligible coefficients on the remaining ones,
allowing an interpretation of the EEG brain mappings with
no overlappings. Thus, our natural choice of the orthonor-
mal matrix T has been based on the varimax criterion pro-
posed by Kaiser [34], which has been followed by others in
analogous works [16, 47, 48, 11] .

Therefore, those F̂ = [f̂1, f̂2, ..., f̂m] can then replace
the initial n variables on m rotated common factor load-
ings where not only the association between the EEG elec-
trodes would be most expressive in terms of variance in-
formation, but also the brain mappings would be the most
independent ones given by the perpendicular rotation T of
the initial factor loadings estimated by the principal compo-
nents method.

3.3. Linear Discriminant Analysis

The association between the entropy values of the elec-
trodes in a supervised way has been performed here using
Linear Discriminant Analysis (LDA) and the technique of
hyperplane navigation [54, 20, 49]. The primary purpose of
LDA is to separate samples of distinct groups by maximiz-
ing their between-class separability while minimizing their
within-class variability.

Let the between-class scatter matrix Sb be defined as



Sb =
g∑

i=1

Ni(xi − x)(xi − x)T (9)

and the within-class scatter matrix Sw be defined as

Sw =
g∑

i=1

(Ni − 1)Si =
g∑

i=1

Ni∑
j=1

(xi,j − xi)(xi,j − xi)T ,

(10)
where xi,j is the n-dimensional signal (or trial) j from class
πi, Ni is the number of trials from class πi, and g is the to-
tal number of classes or groups. The vector xi and matrix Si

are respectively the unbiased sample mean and sample co-
variance matrix of class πi [18]. The grand mean vector x
is given by

x =
1
N

g∑
i=1

Nixi =
1
N

g∑
i=1

Ni∑
j=1

xi,j , (11)

where N is, as described earlier, the total number of input
signals, that is, N = N1 + N2 + . . . + Ng .

The main objective of LDA is to find a projection ma-
trix Wlda that maximizes the ratio of the determinant of
the between-class scatter matrix to the determinant of the
within-class scatter matrix (Fisher’s criterion), that is,

Wlda = arg max
W

∣∣WT SbW
∣∣

|WT SwW |
. (12)

The Fisher’s criterion described in equation (12) is max-
imized when the projection matrix Wlda is composed of the
eigenvectors of S−1

w Sb with at most (g − 1) nonzero cor-
responding eigenvalues [18, 13]. In the case here of a two-
class problem, the LDA projection matrix is in fact the lead-
ing eigenvector wlda of S−1

w Sb.
Once the leading eigenvector wlda has been computed,

we can move along its corresponding projection vector
and extract simultaneously the discriminant differences cap-
tured by the entropy of each EEG electrode. In mathemat-
ical terms, assuming that the spreads of the sample groups
follow a Gaussian distribution, this procedure of navigating
on the most discriminant projection [54, 20, 49] can be gen-
erated through the following simple expression:

yi,j = x + jσi · wlda, (13)

where j ∈ {−3,−2,−1, 0, 1, 2, 3} and σi is the standard
deviation of each sample group i ∈ {1, 2}.

4. Results

Figures 5 and 6 describe the rotated estimated factor
loadings of the neural organization of the CO and DL sam-
ple groups, respectively, with corresponding eigenvalues
greater than 1.

Figure 5. Brain mapping of the most expres-
sive factor loadings of the CO sample group
with corresponding eigenvalues greater than
1.

As can be seen from Figure 5, FA using the entropy in-
formation from the CO sample group has disclosed three
patterns of cortical neural organization. The common fac-
tor 1 (f1, on the left) discloses a higher loading value to
electrodes FP1, FP2, FZ, F7 and F8; the common factor 2
(f2, in the middle) has clustered T4, T5, T6 and PZ; and
the common factor 3 (f3, on the right) shows the connection
between CZ and C3. In words, f1 shows a bilateral high
correlated activity at the anterior brain that may be asso-
ciated with the reading executive functions [3, 14], target
word loading in the working memory and the temporal and
spatial eye scanning control of the possible matching words
or figures. The second factor, f2, shows a bilateral corre-
lated activity at the temporal brain that may be associated
with both the visual recognition of words and figures and
the associated meaning processing [56, 40, 57]. The last fac-
tor considered, f3, discloses a relation between medial and
left central electrodes possibly associated to decision mak-
ing. It is important to note that the bilateral association dis-
closed by the first two common factors (f1 and f2) is in ac-
cordance with the fact that our word/phrase reading tasks
involved both visual (a preferential right hemisphere func-
tion) [29, 30, 25] and verbal (the left hemisphere special-
ization) [26, 27, 28] processing and association of these re-
sults.

However, from Figure 6, it is possible to see that using
the entropy information from the DL sample group FA has
disclosed only two patterns of brain activity for word/phrase
reading solution in children with learning difficulties. The
common factor 1 (f1, on the left) of Figure 6 discloses a
high correlated bilateral anterior activity encompassing a
greater amount of sources than factor 1 of CO group. Here
it consumes resources from basically all central and frontal
brain but the prefrontal. This could be in accordance with



Figure 6. Brain mapping of the most expres-
sive factor loadings of the DL sample group
with corresponding eigenvalues greater than
1.

the fact that these individuals, being unable to disclose the
meaning of the words, had to compute much more executive
functions in controlling the possible associations between
the images processed by right neurons and the sounds they
could produce from their poor grapheme-phoneme conver-
sion operated at left neurons. In factor 2 (f2, on the right)
we see a strong covariation at the posterior and prefrontal
brain, enrolling the temporal T5 and T6 and occiptal O1
and O2 regions. This association may be related with the at-
tempt to associate meaning to the target written word di-
rectly from the visual analysis of the possible matching
figures by the lexical route but demanding executive ef-
forts from prefrontal neurons showing a not well established
temporo-occiptal integration. From these two maps we may
argue that this group tried to use both reading routes, but
disrupted one from another, failing in use executive func-
tions to coordinate the interaction between them.

Lastly, the LDA brain mapping is shown in Figure 7.
LDA hyperplane navigation has disclosed a left to right dif-
ferentiation between CO and DL, grouping mainly the left
central and prefrontal regions of the electrodes C3 and FP1
on CO group and the right central and frontal regions of the
electrodes C4 and F8 on the DL group. In other words, LDA
showed that what most discriminated controls from those
with reading difficulties might have been the activity on lan-
guage/reading circuits located on left hemisphere, whereas
right activity, possibly associated to visual processing of the
image options, discriminated the children with reading dif-
ficulties. According to the fact that DL children did not re-
trieve the meaning of the words, it might be suggested that
this group relied less on language circuits to solve the task
and more on visual processing trying to find out what im-
age could be selected by examining and comparing each one

with the verbal sounds they achieved to translate through the
grapheme-phoneme conversion.

5. Discussion

In this work, we have used EEG and multivariate statis-
tical analysis to disclose cortical neural organization of dif-
ferent groups of children having distinct performances on
word/phrase reading tasks.

Given the design of the reading task we should expect
the recruitment of at least the following three main cogni-
tive functions: verbal to read (words), visual to recognize
(images) and executive to control attention between the var-
ious information stimuli carried out (1 target word and 5
image options). Since the work from Baddeley [3], it has
been suggested that our working memory, that is, our abil-
ity to deal with various information for a short period of
time, involves three components which comprise the tem-
poral verbal-acoustic storage system, the visual sketchpad
and the central executive, having each one of these compo-
nents a respectively major correspondence to left, right and
frontal-prefrontal brain areas.

Therefore, based on our DL sample group results and
linking the briefly mentioned Baddeley model with the
dual-route reading language model, we may argue that:
(factor 1) the temporal verbal-acoustic storage system and
the visual sketchpad were associated trying to correlate
the sounds produced by the left frontal neurons during
grapheme-phoneme conversion to the image options and
positions processed by the right central frontal areas; (fac-
tor 2) the occipital-temporal lexical route needed the en-
rollment of pre-frontal neurons in order to use the central
executive to coordinate the interaction between the word-
reading area (temporal neurons) and the visual occipital
neurons.

As a final consideration, the differences found between
both sample groups, i.e. the number of factors with eigen-
values greater than 1 and the left to right regions discrimi-
nating CO and DL children, show that the set of techniques
used here to generate the brain mappings may become an
effective tool in helping the diagnostic process of children
with learning disabilities. We believe that these mappings
used jointly with an anamnesis and a set of cognitive tasks
may at least help us better understand the neural organiza-
tion underlying the ability to solve different kinds of prob-
lems by different sample groups.
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Figure 7. Brain mapping of the most discriminant entropy values captured by the LDA
hyperplane navigation. From left (group of CO samples) to right (group of DL samples):
[−3σ1,−2σ1,−1σ1, x1,+1σ1, boundary,−1σ2, x2,+1σ2,+2σ2,+3σ2].
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