
In: 5th IFAC Workshop on Intelligent Manufacturing Systems (IMS´98) – Gramado -RS – Brazil - November 9-11 1998. Elsevier Science

1999

1. INTRODUCTION

In the planning area, the reasoning about action is

important, because the plans are made by a sequence

of actions. So, a deep study of how to treat the

ramification problem in actions is essential, in order

to provide for planning systems correct effects caused

by each action presented in a plan.

In Ramification Problem, an action can cause

extended effects that need to be detected. As used in

(Giunchiglia and Lifschitz, 1995), there are two kinds

of fluent that simulate the problem: the inertial and

the dependent. The first is characterized by its

continuos existence since the fluent that caused it

comes to the end. The second is different, it means

that a fluent depends on values of others fluents.

In the Ramification Problem, translating all the

consequences of actions into formal framework is

difficult, in order to control the reasoning about

change caused by actions. For example, if a box will

be moved, all the things inside will move along with

it. The papers on top will move also, but the lamp on

top will roll along the box's surface and will fall

down. These kind of effects are natural in human

intelligence for reasoning about change, but they are

hard to be expressed in another language, as in

logical framework.

Many logical theories were proposed, like the

situation calculus (SITCAL) (Lin, 1996) based on

first-order logic, the temporal and the modal logics,

to work with reasoning about action and its effects.

However, they are difficult to work well with fluents,

because they don't work with databases, what make

difficult the definitions of dependent fluents with

persistence feature. In (Giunchiglia and Lifschitz,

1995), another action language was proposed, called

ARD, that has the characteristic to work with the

dependent fluents, but difficult to use in planning.

Therefore, to formalize the ramification problem in

some logical framework that allow its use in the

planning area, a kind of logical theory that works

with update in databases, that makes possible the

treatment of fluent and that has a powerful tool to

work with the relation of actions to fluent is essential.

ON THE TREATMENT OF THE RAMIFICATION PROBLEM

WITH TRANSACTION LOGIC

Flavio Tonidandel and Márcio Rillo

 Universidade de São Paulo

Divisão de Automação e Inteligência Artificial - DAIA

 Av. Luciano Gualberto, 158, trav3 - São Paulo -SP - Brazil

05508-900 e-mail: {flavio,rillo}@lsi.usp.br

Abstract: In the planning area, the reasoning about action is important, because the

plans are made by a sequence of actions. Each action has its effects that need to be

treated and formalized in some logical framework.The use of Transaction Logic (TR)

makes possible a perfect definition of fluents to treat the effects of ramification

problems, because the TR works with database controlled by transition and data oracles.

The TR has a powerful set of inference rules that makes possible its implementation in

PROLOG, like SLD-resolution, allowing the application of effects in a computational

way. Copyright © 1998 IFAC

Keywords: Artificial intelligence, computational methods, databases, formal languages,

reasoning

The use of Transaction Logic (TR) (Bonner and

Kifer, 1995) can solve all the necessities described

above, because it works with database update

controlled by transition oracle, it allows the treatment

of fluent behavior by the use of data oracle, and it has

a powerful set of inference rules that make possible

the relation between TR formulas and the database.

Some papers, like (Bonner and Kifer, 1998; Santos,

1996; Santos and Rillo, 1997), work with

formalization of actions in TR without any concern

with dependent effects of them. So, this paper will

provide a logical treatment of the ramification

problem in the Transaction Logic Framework, and

will show how to implement inertial and dependent

fluent in PROLOG.

2. OVERVIEW OF TRANSACTION LOGIC

The Transaction Logic is an extension of first-order

logic, with the introduction of a new operator called

serial conjunction (⊗). This operator represents a

procedural activity, where α ⊗ β means "first execute

α, and then execute β". To describe a transaction,

consider this notation: P,D0,...,Dn |= Ψ.

Where P is called transaction base, that is a set of TR

formulas, like is Ψ. Although, each Di is a set of first-

order formula, that represents the database state.

Intuitively, P is a set of transactions definitions, Ψ is

a invocation of these transactions, and D0,...,Dn is the

sequence of database, representing all the states of

transaction execution. For example, calling the

transaction Ψ, the database can go from initial state

D0 to final state Dn. But, if Ψ is a query, the database

will not change, and will be represented by P,D |= Ψ.

2.1. Query and Update Operations

In TR, a database state is defined by data oracle O
d
.

For each state identifier, i, O
d
(i) is a mapping of i and

a set of first-order formulas that represent the truth of

database state. Depending on the application domain,

different kinds of data oracles can be specified. The

more common is the generalized-Horn data oracle,

where O
d
(i) is a set of generalized-Horn formula1,

and it is the kind of data oracle that will be used in

this paper.

The TR works with updates through transition oracle,

O
t
, that is a mapping function between states pairs

and a set of atomic formulas. For example, a first-

order formula λ can be inserted with λ.ins, that can

change a database D0 to D1=D0+{λ}. So, P,D0,D1 |=

λ.ins because λ.ins ∈ Ot(D0,D1). The same can be

1
 Generalized-Horn formulas are first-order formulas with

negation.

made by λ.del, as P,D0,D1 |= λ.del iff λ.del ∈

Ot(D0,D1) where D1=D0 - {λ}. This paper will use the

predicates ins(λ) and del(λ) to represent λ.ins and

λ.del.

It can be observed that, depending on the application

domain, there can be many kinds of transition oracle.

E.g., it can be specified that some predicates can't be

removed from database, or that others can't be

inserted. This shows that the TR may have a

independent domain application without changing the

TR formal structure, through specification of the

transition oracle.

2.3. Models Theory

Unlike others logics, the TR semantic is based on

paths, and not on arcs between states like modal

logics. In TR, a state sequence is verified by states

path executed by a transaction, i.e.: D1,...,Dn |=Ψ,

where Ψ is some transaction formula.

The TR has its model restricted by the both oracles,

data oracle and transition oracle. So, the TR needs

the compliance with both oracles such that:

1. If O
t
(D0,D1) |= α then P,D0,D1 |= α ; where α is a

TR formula.

2. If O
d
(D0) |= α then P,D0 |=α; where α is a first

order formula.

2.4. Proof Theory

The use of a more restrictive theory of the TR, called

serial-Horn version, is necessary to provide TR with

a sound and complete proof theory. The serial-Horn

formula uses only the serial conjunction operator ⊗,

and has the same characteristics of Horn formula in

first-order logic. It consists in transaction base P,

which is a set of serial-Horn formula, and of database

D, which is a set of first-order formula, where a

transaction can insert or remove formula. With this

restrictive version, a inference system as SLD-

resolution in PROLOG can be defined:

Definition 1 (Inference System) If P is a transaction

base, then the inference system is the following

scheme of axiom and inference rules, where D and

Di are any database state identifier.

AXIOM : P,D ... |- ().

INFERENCE RULES: In rules 1-3 below, σ is a

substitution, a and b are atomic formulas, and Φ and

rest are transaction formulas.

1. Defining transaction: if a←Φ is a rule in P and if

a and b unify with mgu σ, then

 P,D...|- (∃)(Φ⊗rest)σ

 P,D...|- (∃)(b⊗rest)

2. Querying the database: if bσ and restσ share no

variables, and O
d
(D) |= (∃) bσ, then

 P,D...|- (∃)restσ

 P,D...|- (∃)(b⊗rest)

3. Elementary updates: if bσ and restσ share no

variables, and Ot(D1,D2)|= (∃)bσ, then

 P,D2...|- (∃)restσ

 P,D1...|- (∃)(b⊗rest)

2.5. Implementation of the TR in PROLOG

The serial-Horn version implementation was studied

by Hung (1996), where was proposed an algorithm of

insertions and removals of predicates in PROLOG

that works with backtracking, defining for this some

predicates like ins and del.

The Hung's implementation defines a set of rules that

specifies the transition oracle, establishing a logical

treatment for assert and retract predicates of

PROLOG through onbktk(_) predicate.

The work of Santos (1997) proves the equivalence of

the TR serial-horn version semantic, with the use of

predicates ins(_) and del(_) by transition oracle, and

its implementation in PROLOG, and an additional

contribution with a demonstration that a

representation of the TR serial-horn version can be

translated in one, and only one, PROLOG program.

The equivalence between the TR semantic and the

PROLOG program was made by definition of a

translation function to PROLOG from TR with

Hung's algorithm. The translation function defined in

(Santos, 1997) is the following:

Definition 2 (Translation Function τ) Given a TR

formula φ, its translation function, described as τ(φ)

to PROLOG is defined as:

1. τ(q) = qry(q) for all q = query on database

2. τ(a ⊗ b) = τ(a) , τ(b)

3. τ(a1 ⊗ a2 ⊗ a3 ⊗ ... ⊗ an) = τ(a1) , τ(β) for

β=a2 ⊗ a3 ⊗ ... ⊗ an

4. τ(p←a) = p:- τ(a)

5. τ(p←a) = db(p) :- qry(a) if p←a is a rule in

database.

6. τ(¬a) = \+ τ(a)

7. τ(ins(X)) = ins(X)

8. τ(del(X)) = del(X)

9. τ(f) = f where f is a function

Fig. 1. The Hung's algorithm

Santos defines, based on Hung's algorithm showed in

figure 1, a system called Ξ that change the assert and

retract predicates of the PROLOG language by pos(_)

and neg(_) predicates, as matter to use only a pure

PROLOG program. This system Ξ, that implements

the transition oracle and database of the TR in

PROLOG, is used as a fixed algorithm that must be

jointed with the resulted algorithm by translation

function.

Therefore, Santos proved the equivalence between

the serial-horn version of TR with the PROLOG

program made from translation function and system

Ξ. For this proof, Santos used the generalized

immediate consequence operator Tp
j
(I) (Apt, 1986)

that turns the minimal model of Herbrand of a logical

program P, where J is a pre-interpretation of an first-

order language, and I is an interpretation based on J,

which can be a model of P iff Tp
j(I) ⊆ I (Apt, 1986).

So, with the use of Tp
j
(I), Santos defined the

following corollary and theorem:

Theorem 3 (TR equivalence) Consider a serial Horn

program P and its respective translation in pure

PROLOG P', where P'= τ(P) and τ is the translation

algorithm. So, P and P' are equivalent.

Proof: in (Santos, 1997).

In addition, the translation function expressed in

theorem above uses the Ξ system.

Corollary 4 if P,D0...Dn |-φ then φ' ∈ {Tp
j(I)↑ k},

where k=n-1.

Proof: in (Santos, 1997).

The corollary states that if a formula φ, wrote in TR,

can be proved with the use of P in the path <D0...Dn>,

then the translation of φ, φ' = τ(φ), is presented after k

interaction of the Tp
j
 operator, where k=n-1. With

(Santos, 1997), the serial-Horn version of the TR can

be implemented in pure PROLOG without changes in

semantic structure, what makes possible the

implementation of formalized systems with the TR

serial-horn version in a computational language

DATABASE

Positive-

Bounded

onbktk(X).

onbktk(X) :- call(X), !, fail.

insp(X) :- assert(X), onbktk(retract(X)).

delp(X) :- retract(X), onbktk(assert(X)).

delp(X).

ins(X) :- not (db(ip(X))), insp(db(ip(X))).

ins(X) :- db(ip(X)), delp(db(dp(X))).

del(X) :- db(ip(X)), ins(db(dp(X))).

Dependent

Fluent

Inertial Fluent Inertial Fluent

3. RAMIFICATION PROBLEM

On the ramification problem, the difficulty is to

determine the indirect effects of the all actions in

knowledge base. The Transaction Logic become a

powerful logic to declare indirect effects because it

has a inference mechanism in accordance with the

both oracles that states all the truth about database.

Considering each first-order formula in the TR

database as a fluent, by the work of Giunchiglia and

Lifschitz (1995), can be defined the indirect effects as

two kind of fluent:

• Inertial Fluent

• Dependent Fluent

The inertial fluents (fI) are the fluents that don't

depend on others fluents to be true in any world state.

The dependent fluents (fD), differently, only become

true in some world state if some inertial fluents is true

or false at that state. On this basis, inertial and

dependent fluents in TR are defined:

Definition 5: The inertial fluents fI are divided into

three fluents:

 f I = not-bounded inertial fluent

 f IN = negative-bounded inertial fluent

 f IP = positive-bounded inertial fluent

The division of inertial fluent is necessary to

determine the persistent dependent fluent, what

means that some fluents are dependent only in some

situations. For example, fIP is inserted in database if

some fI is inserted too, but if this fI is removed from

database, the fIP doesn’t get out with. The figure 2 can

show the fluent behavior from the definition

above.The fluents are defined by Transition Oracle:

Definition 6 (Not-bounded inertial fluent) A Not-

bounded inertial fluent is defined as:
ins(f I) ∈ O

t
(D1,D2) iff D1=D2+{f I}

del(f I) ∈ O
t
(D1,D2) iff D1=D2-{fI }

The fIP is defined as the fluent that comes into

database bounded with some not-bounded inertial

fluent fI:

Definition 7 (Positive-bounded inertial fluent) An

Positive-bounded inertial fluent is defined as:

ins(f IP) ∈ O
t
(D1,D2) iff D1=D2+{fI ,f IP}

The fIN is defined as the fluent that comes out

database bounded with some not-bounded inertial

fluent fI:

Definition 8 (Negative-bounded inertial fluent) A

Negative-bounded inertial fluent is defined as:

del(f IN) ∈ O
t
(D1,D2) iff D1=D2 -{f I , f IN}

An example, as in (Giunchiglia and Lifschitz, 1995),

can be showed as: If some product is in the water,

then it gets wet, and it will still be wet after comes out

the water. So:

 fIP = InWater(product)

 fI = Wet(product)

Inserting into database the InWater(product) fluent,

the Wet(product) fluent will be inserted too. It can be

notice that Wet(product) fluent is not dependent of

InWater(product), because Wet(product) is still true

independent on the existence or not of

InWater(product) in database.

Definition 9 (Dependent Fluents) A fD is defined as

a TR database rule and has the follow structure:

 f D ← f I1 ∧ f I2 ∧ ... ∧ f In ; n>0

 Where each fIi can be negative or positive.

In order to guarantee that the set of rules in database

doesn't allow the looping definition, the definition of

dependent fluents was made as the classical

conjunction of inertial fluents instead of fD ← fD.

The existence of a positive-bounded and negative-

bounded fluents is necessary for the same reason that

dependent fluent is dependent of inertial fluent only,

that is to avoid the looping rules.

An example of dependent fluent, as in (Giunchiglia

and Lifschitz, 1995): Consider a key that while being

in downward, the human that passes in front of that

machine is safety. So,

 fD = safety (human)

 fI = position (key, down)

 safety (human) ← position (key, down).

On this way, safety(human) will only be true if the

key is downward, and if not, the safety of the human

that is passing in front of that machine will be not

guaranteed. This is different of the persistence

feature, because the fluent safety(human) depends on

the existence of the other to be true.

The definitions need to be verified if they don't

change the TR model, and consequently the inference

rules and the TR soundness and completeness.

Fig. 2. The fluent schema in database and it's

update. The dotted line represents the bounding

property and arrows the flow.

Negative-Bounded

Inertial Fluent

Inertial Fluent

Inertial Fluent

Inertial Fluent

Inertial Fluent

The TR model is based on paths, and these paths, as

model definition, must be in accordance with O
d
 e O

t

as follows:

1. If O
t
(D0,D1)|= α then P,D0,D1|= α ;where α is a

TR formula.

2. If O
d
(D0)|= α then P,D0|=α ; where α is a first

order formula.

All theories of TR are made with a model that has the

compliance above. So, the TR model will not change

with the definitions above because it needs to be in

accordance with them.

4. NEW IMPLEMENTATION IN PROLOG

The work of Santos (1997), in the equivalence proof

of the semantic between pure PROLOG and the TR,

used an algorithm called system Ξ, that is the

implementation (representation) of the Transition

Oracle in pure PROLOG. In addition, as Ξ extension,

the system ΞR
 can be defined. However, to use the

new system in PROLOG, the semantic equivalence

analysis is necessary. So, following the Santos' steps,

the new system ΞR
 can be defined.

Definition 10 (System ΞR) A ΞR
 system is defined as

being the following algorithm:

onbktk(X).

onbktk(X) :- X,

pos(_):-

neg(_):-

insp(X) :- pos(X), onbktk(neg(X)).

delp(X) :- neg(X), onbktk(pos(X)).

delp(X).

insb(X) :- not (db(ip(X))), insp(db(ip(X))).

insb(X) :- db(ip(X)), delp(db(dp(X))).

ins(X):-¬(db(ip(X))),bounded_ins(X),

insp(db(ip(X))).

ins(X) :- db(ip(X)), bounded_ins(X), delp(db(dp(X))).

ins(X) :- ¬bounded_ins(X), insb(X).

delb(X) :- db(ip(X)), insp(db(dp(X))).

del(X) :- db(ip(X)), bounded_del(X), insp(db(dp(X))).

del(X) :- ¬bounded_del(X), delb(X).

To use the definitions of inertial and dependent

fluents, the new rules in ΞR
 system are necessary:

Definition 11: Given a transition oracle, its

translation function will complete the ΞR
 as follows:

1. For each definition: fIP.ins ∈ O
t
(D1,D2) iff D1=D2

+ {f I,f IP}, the rule will be included in ΞR
 system:

 bounded_ins(fIP):- insb(fI) in PROLOG.

2. For each definition: fIN.del ∈ O
t
(D1,D2) iff D1=D2

- {f I,f IN} the rule will be included in ΞR
 system:

 bounded_del(fIN) :- delb(fI) in PROLOG.

So, with the definitions above, the ΞR
 system will be

given by the algorithm described in definition 10 and

the bounded_ins and bounded_del rules introduced

by definition 11 following the transition oracle

conditions.

4.1. Equivalence Proof between the TR and

PROLOG for the ΞR
 system.

Santos proved the equivalence between TR and

PROLOG through the proof of the following three

items:

1. P ⇔ MP*

2. P ⇔ P'

3. P' ⇔ { Tp
j
 (I) ↑ k }

The proof of the first item is presented in (Bonner

and Kifer, 1995). The second item keeps the same

proof of Santos (1997), because the translation

function is the same, and the ΞR system still does not

allow the double definition from the same transition

oracle.

In the third item, the proof is the following: Consider

a formula φ such that P,D --- |= φ, it can be proved if

after the translation of the P program in P' and φ in

φ', φ' ∈ { Tp
j (I) ↑ k }. As the new system ΞR will

keep the same proof of Santos (1997), it happens

because the new pre-interpretation J will consider the

new predicates bounded_ins and bounded_del, and

keeping the pos(_) and neg(_) predicates, the tree of

possibilities from them will be such that follows the

path of states. Therefore, the conclusion obtained is

similar to Santos’ one, a path of the TR execution of

length n will be equivalent to the interpretation given

after k interactions of Tp
j
(I), such as k=n-1.

Keeping the same equivalence proof, the system ΞR

keeps the equivalence of the TR semantic and pure

PROLOG semantic, and it also keeps the corollary 4

and theorem 3.

5. CONCLUSION

Due to the increase of systems in formal description,

the TR stands out its sub-theory called serial-Horn

that has inference rules which makes possible the

computational application. Santos (1997) proved the

semantic equivalence between serial-Horn version of

the TR and the semantic of a pure PROLOG program

acquired by translation function, making possible that

any system formalized in serial-Horn version can be

implemented in PROLOG.

So that, many works in reasoning about actions area

with a formalism based in TR were developed,

showing the power of the TR in definition of actions

(Bonner and Kifer, 1994; Bonner and Kifer, 1998;

Santos, et al., 1996; Santos, 1996; Santos and Rillo,

1997). Others logical theories were also used in this

area, but they don't have a database treatment and

inference rules to be implemented, as SITCAL and

Temporal logic.

The SITCAL (Levesque, et al., 1994; Lin, 1996) has

some limitation to describe knowledge inherited from

limitations of the first order logic. It is difficult to

work with non-monotonic actions and still doesn't

have a database treatment. The implementation of

SITCAL in GOLOG (Levesque, et al., 1994) was not

based in logical inference rules, what makes difficult

the implementation of theories described in SITCAL

in GOLOG language. Temporal logic have the same

problem, it lacks in inference rules and database

treatment. In addition, it still has a powerful theory to

describe temporal knowledge, however it doesn't

have a clean syntax, making difficult a good and easy

interpretation of its formulas.

The knowledge representation in TR, therefore, is

objective and efficient, overcoming the first order

logic and the temporal logic by the existence of a

database and a pair of oracles that controls updates

and what is true in database. In reasoning about

actions, the TR allows the use of inertial and

dependent fluent as the recently theories from the

area (Giunchiglia and Lifschitz, 1995), that can be

applied in production planning in manufacturing

areas for a perfect definition of actions effects. It

allows its implementation in PROLOG without losing

the semantic equivalence with formal theory.

These features make possible a clear and effective

manifestation of inertial and dependent fluents, which

are very important in the construction of the

knowledge base for real applications.

ACKNOWLEDGMENTS

This work was supported by a grant from the

Brazilian Research Council - CNPq. Thanks to

Marcus V. Tolentino dos Santos for the important

discussion on fluents in Transaction Logic

Framework.

REFERENCES

Apt, K.R. (1986) Introduction to Logic

Programming. In: Handbook of Theoretical

Computer Science, p. 495-574. J. Van Leeuwen

Ed., North Holland.

Bonner, A.J. and M. Kifer (1994). Applications of

Transaction Logic to Knowledge Representation.

In: Proceedings of the International Conference

on Temporal Logic (ICTL), Lecture Notes in

Artificial Intelligence, vol. 827, p. 67-81,Springer

Verlag, Bonn, Germany.

Bonner, A. J. and M. Kifer (1995). Transaction logic

programming. Technical Report CSRI-323.

University of Toronto, Toronto.

Bonner, A.J. and M. Kifer (1998). Results on

Reasoning about Updates in Transaction Logic.

In: Lecture Notes in Computer Science (B.

Freitag, H. Decker, M. Kifer and A. Voronkov

Ed.), Vol. 1472, Springer-Verlag, Berlin.

Giunchiglia, E. and V. Lifschitz (1995). Dependent

fluents. In: Proceedings of the Fourteenth

International Joint Conference on Artificial

Intelligence - IJCAI'95, pp. 1964-1969, Montreal.

Hung, S.K (1996). Implementation and performance

of transaction logic in prolog. Master's

dissertation, University of Toronto, Toronto.

Levesque, H.L.; R. Reiter; Y. Lespérance; F. Lin and

R.B. Scherl (1994). GOLOG: A Logic

Programming Language for Dynamic Domains.

Journal of Logic Programming, 31, 59-84.

Lin, F. (1996). Embracing Causality in Specifying the

Indeterminate Effects of Actions. In: Proceedings

of AAAI-96, pp. 670-676, AAAI Press, Portland.

Santos, M.V.T.; P.E. Santos; F.C.S. Silva and M.

Rillo (1996). Actions as prolog programs. In:

IEEE Proceedings of the Joint Symposia on

Intelligence and System, pp. 178-183

Washington.

Santos, M. V. T. (1996). On the formalization of

actions using transaction logic. In: Proceedings of

12th ECAI - Worshop on Cross-fertilization in

planning, Budapeste.

Santos, M.V.T. and M. Rillo (1997). Approaching

the Plans are Program paradigm using transaction

logic. In: Proceedings of Forth European

Conference on Planning - ECP '97, Toulouse.

Santos, P. E. (1997). Equivalence between

transaction logic semantic and its implementation

semantic in PROLOG (Equivalência entre a

semântica da lógica de transações e a semântica

de sua implementação Prolog). Master’s

Dissertation, University of São Paulo, São Paulo.

