
In: 5th IFAC Workshop on Intelligent Manufacturing Systems (IMS´98) – Gramado -RS – Brazil  -  November 9-11 1998. Elsevier Science 

1999 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.   INTRODUCTION 

 

In the planning area, the reasoning about action is 

important, because the plans are made by a sequence 

of actions. So, a deep study of how to treat the 

ramification problem in actions is essential, in order 

to provide for planning systems correct effects caused 

by each action presented in a plan.  

 

In Ramification Problem, an action can cause 

extended effects that need to be detected. As used in 

(Giunchiglia and Lifschitz, 1995), there are two kinds 

of fluent that simulate the problem: the inertial and 

the dependent. The first is characterized by its 

continuos existence since the fluent that caused it 

comes to the end. The second is different, it means 

that a fluent depends on values of others fluents. 

 

In the Ramification Problem, translating all the 

consequences of actions into formal framework is 

difficult, in order to control the reasoning about 

change caused by actions. For example, if a box will 

be moved, all the things inside will move along with 

it. The papers on top will move also, but the lamp on 

top will roll along the box's surface and will fall 

down. These kind of effects are natural in human 

intelligence for reasoning about change, but they are 

hard to be expressed in another language, as in 

logical framework. 

 

Many logical theories were proposed, like the 

situation calculus (SITCAL) (Lin, 1996) based on 

first-order logic, the temporal and the modal logics, 

to work with reasoning about action and its effects. 

However, they are difficult to work well with fluents, 

because they don't work with databases, what make 

difficult the definitions of dependent fluents with 

persistence feature. In (Giunchiglia and Lifschitz, 

1995), another action language was proposed, called 

ARD, that has the characteristic to work with the 

dependent fluents, but difficult to use in planning. 

 

Therefore, to formalize the ramification problem in 

some logical framework that allow its use in the 

planning area, a kind of logical theory that works 

with update in databases, that makes possible the 

treatment of fluent and that has a powerful tool to 

work with the relation of actions to fluent is essential. 
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The use of Transaction Logic (TR) (Bonner and 

Kifer, 1995) can solve all the necessities described 

above, because it works with database update 

controlled by transition oracle, it allows the treatment 

of fluent behavior by the use of data oracle, and it has 

a powerful set of inference rules that make possible 

the relation between TR formulas and the database. 

 

Some papers, like (Bonner and Kifer, 1998; Santos, 

1996; Santos and Rillo, 1997), work with 

formalization of actions in TR without any concern 

with dependent effects of them. So, this paper will 

provide a logical treatment of the ramification 

problem in the Transaction Logic Framework, and 

will show how to implement inertial and dependent 

fluent in PROLOG. 

 

 

2.   OVERVIEW OF TRANSACTION LOGIC 

 

The Transaction Logic is an extension of first-order 

logic, with the introduction of a new operator called 

serial conjunction (⊗). This operator represents a 

procedural activity, where α ⊗ β means "first execute 

α, and then execute β". To describe a transaction, 

consider this notation: P,D0,...,Dn |= Ψ. 

 

Where P is called transaction base, that is a set of TR 

formulas, like is Ψ. Although, each Di is a set of first-

order formula, that represents the database state. 

Intuitively, P is a set of transactions definitions, Ψ is 

a invocation of these transactions, and D0,...,Dn is the 

sequence of database, representing all the states of 

transaction execution. For example, calling the 

transaction Ψ, the database can go from initial state 

D0 to final state Dn. But, if Ψ is a query, the database 

will not change, and will be represented by P,D |= Ψ. 

  

 

2.1.   Query and Update Operations 

 

In TR, a database state is defined by data oracle O
d
. 

For each state identifier, i, O
d
(i) is a mapping of i and 

a set of first-order formulas that represent the truth of 

database state. Depending on the application domain, 

different kinds of data oracles can be specified. The 

more common is the generalized-Horn data oracle, 

where O
d
(i) is a set of generalized-Horn formula1, 

and it is the kind of data oracle that will be used in 

this paper.  

The TR works with updates through transition oracle, 

O
t
, that is a mapping function between states pairs 

and a set of atomic formulas. For example, a first-

order formula λ can be inserted with λ.ins, that can 

change a database D0 to D1=D0+{λ}. So, P,D0,D1 |= 

λ.ins because λ.ins ∈ Ot(D0,D1). The same can be 

                                                           
 
1
 Generalized-Horn formulas are first-order formulas with  

negation. 

made by λ.del, as P,D0,D1 |= λ.del  iff λ.del ∈ 

Ot(D0,D1) where D1=D0 - {λ}. This paper will use the 

predicates ins(λ) and del(λ) to represent λ.ins and 

λ.del.  

 

It can be observed that, depending on the application 

domain, there can be many kinds of transition oracle. 

E.g., it can be specified that some predicates can't be 

removed from database, or that others can't be 

inserted. This shows that the TR may have a 

independent domain application without changing the 

TR formal structure, through specification of the 

transition oracle. 

 

 

2.3.   Models Theory  

 

Unlike others logics, the TR semantic is based on 

paths, and not on arcs between states like modal 

logics.  In TR, a state sequence is verified by states 

path executed by a transaction, i.e.: D1,...,Dn |=Ψ, 

where Ψ is some transaction formula. 

 

The TR has its model restricted by the both oracles, 

data oracle and transition oracle. So, the TR needs 

the compliance with both oracles such that: 

 

1. If O
t
(D0,D1) |= α then P,D0,D1 |= α ; where α is a 

TR formula. 

2. If O
d
(D0) |= α then  P,D0 |=α; where α is a first 

order formula. 

 

 

2.4.   Proof Theory 

  

The use of a more restrictive theory of the TR, called 

serial-Horn version, is necessary to provide TR with 

a sound and complete proof theory. The serial-Horn 

formula uses only the serial conjunction operator ⊗, 

and has the same characteristics of  Horn formula in 

first-order logic. It consists in transaction base P, 

which is a set of serial-Horn formula, and of database 

D, which is a set of first-order formula, where a 

transaction can insert or remove formula. With this 

restrictive version, a inference system as SLD-

resolution in PROLOG can be defined: 

 

Definition 1 ( Inference System) If P is a transaction 

base, then the inference system is the following 

scheme of axiom and inference rules, where D and 

Di are any database state identifier. 

 

AXIOM :  P,D ... |- (). 

INFERENCE RULES: In rules 1-3 below, σ is a 

substitution, a and b are atomic formulas, and Φ and 

rest are transaction formulas. 
 

1. Defining transaction: if a←Φ is a rule in P and if 

a and b unify with mgu σ, then 

 



 P,D...|- (∃)(Φ⊗rest)σ 

 P,D...|- (∃)(b⊗rest) 

 

2. Querying the database: if bσ and restσ share no 

variables, and O
d
(D) |= (∃) bσ, then 

 

 P,D...|- (∃)restσ 

 P,D...|- (∃)(b⊗rest) 

 

3. Elementary updates: if bσ and restσ share no 

variables, and Ot(D1,D2)|= (∃)bσ, then 

 

 P,D2...|- (∃)restσ 

 P,D1...|- (∃)(b⊗rest) 

 

  

2.5.   Implementation of the TR in PROLOG 

 

The serial-Horn version implementation was studied 

by Hung (1996), where was proposed an algorithm of 

insertions and removals of predicates in PROLOG 

that works with backtracking, defining for this some 

predicates like ins and del.  

 

The Hung's implementation defines a set of rules that 

specifies the transition oracle, establishing a logical 

treatment for assert and retract predicates of 

PROLOG through onbktk(_) predicate. 

 

The work of Santos (1997) proves the equivalence of 

the TR serial-horn version semantic, with the use of 

predicates ins(_) and del(_) by transition oracle, and 

its implementation in PROLOG, and an additional 

contribution with a demonstration that a 

representation of the TR serial-horn version can be 

translated in one, and only one, PROLOG program. 

The equivalence between the TR semantic and the 

PROLOG program was made by definition of a 

translation function to PROLOG from TR with 

Hung's algorithm. The translation function defined in 

(Santos, 1997) is the following: 

 

Definition 2 (Translation Function τ ) Given a TR 

formula φ, its translation function, described as τ(φ) 

to PROLOG is defined as: 

1.   τ(q) = qry(q)      for all q = query on database 

2.   τ(a ⊗ b) = τ(a) , τ(b)   

3.   τ(a1 ⊗ a2 ⊗ a3 ⊗ ... ⊗ an) = τ(a1) , τ(β)  for 

β=a2 ⊗ a3 ⊗ ... ⊗ an 

4.   τ( p←a) = p:- τ(a) 

5.  τ(p←a) = db(p) :- qry(a)   if p←a is a rule in 

database. 

6.   τ(¬a) = \+ τ(a) 

7.   τ(ins(X)) = ins(X) 

8.   τ(del(X)) = del(X) 

9.   τ( f ) = f  where f is a function 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The Hung's algorithm 

 

Santos defines, based on Hung's algorithm showed in 

figure 1, a system called Ξ that change the assert and 

retract predicates of the PROLOG language by pos(_) 

and neg(_) predicates, as matter to use only a pure 

PROLOG program. This system Ξ, that implements 

the transition oracle and database of the TR in 

PROLOG, is used as a fixed algorithm that must be 

jointed with the resulted algorithm by translation 

function. 

 

Therefore, Santos proved the equivalence between 

the serial-horn version of TR with the PROLOG 

program made from translation function and system  

Ξ. For this proof, Santos used the generalized 

immediate consequence operator Tp
j
(I) (Apt, 1986) 

that turns the minimal model of Herbrand of a logical 

program P, where J is a pre-interpretation of an first-

order language, and I is an interpretation based on J, 

which can be a model of P iff Tp
j(I) ⊆ I (Apt, 1986). 

So, with the use of Tp
j
(I), Santos defined the 

following corollary and theorem: 

 

Theorem 3 (TR equivalence) Consider a serial Horn 

program P and its respective translation in pure 

PROLOG P', where P'= τ(P) and τ is the translation 

algorithm. So, P and P' are equivalent. 

 

Proof: in (Santos, 1997). 

 

In addition, the translation function expressed in 

theorem above uses the Ξ system. 

 

Corollary 4  if P,D0...Dn |-φ  then  φ' ∈ {Tp
j(I)↑ k}, 

where  k=n-1. 

 

Proof: in (Santos, 1997). 

 

The corollary states that if a formula φ, wrote in TR, 

can be proved with the use of P in the path <D0...Dn>, 

then the translation of φ, φ' = τ(φ), is presented after k 

interaction of the Tp
j
 operator, where k=n-1. With 

(Santos, 1997), the serial-Horn version of the TR can 

be implemented in pure PROLOG without changes in 

semantic structure, what makes possible the 

implementation of formalized systems with the TR 

serial-horn version in a computational language 

 

 

 

 

 

DATABASE 

Positive-

Bounded 

onbktk(X). 

onbktk(X) :- call(X), !, fail. 

insp(X) :- assert(X), onbktk(retract(X)). 

delp(X) :- retract(X), onbktk(assert(X)). 

delp(X).  

ins(X) :- not (db(ip(X))), insp(db(ip(X))). 

ins(X) :- db(ip(X)), delp(db(dp(X))). 

del(X) :- db(ip(X)), ins(db(dp(X))). 

 

Dependent 

Fluent 

Inertial Fluent Inertial Fluent 



 

 

 

 

 

 

 

 

 

 

 

 

 

3.   RAMIFICATION PROBLEM 

 

On the ramification problem, the difficulty is to 

determine the indirect effects of the all actions in 

knowledge base. The Transaction Logic become a 

powerful logic to declare indirect effects because it 

has a inference mechanism in accordance with the 

both oracles that states all the truth about database. 

 

Considering each first-order formula in the TR 

database as a fluent, by the work of Giunchiglia and 

Lifschitz (1995), can be defined the indirect effects as 

two kind of fluent:  

• Inertial Fluent 

• Dependent Fluent 

 

The inertial fluents ( fI ) are the fluents that don't 

depend on others fluents to be true in any world state. 

The dependent fluents ( fD ), differently, only become 

true in some world state if some inertial fluents is true 

or false at that state. On this basis, inertial and 

dependent fluents in TR are defined: 

 

Definition 5: The inertial fluents fI are divided into 

three fluents: 

 f I = not-bounded inertial fluent 

 f IN = negative-bounded inertial fluent 

 f IP = positive-bounded inertial fluent 

 

The division of inertial fluent is necessary to 

determine the persistent dependent fluent, what 

means that some fluents are dependent only in some 

situations. For example, fIP is inserted in database if 

some fI is inserted too, but if this fI is removed from 

database, the fIP doesn’t get out with. The figure 2 can 

show the fluent behavior from the definition 

above.The fluents are defined by Transition Oracle: 

 

Definition 6 (Not-bounded inertial fluent) A Not-

bounded inertial fluent is defined as:  
ins(f I) ∈ O

t
(D1,D2) iff D1=D2+{f I} 

del(f I) ∈ O
t
(D1,D2) iff D1=D2-{fI } 

The fIP is defined as the fluent that comes into 

database bounded with some not-bounded inertial 

fluent fI: 

 

Definition 7  (Positive-bounded inertial fluent) An 

Positive-bounded inertial fluent is defined as: 

ins(f IP) ∈ O
t
(D1,D2) iff D1=D2+{fI ,f IP}   

 

The fIN  is defined as the fluent that comes out 

database bounded with some not-bounded inertial 

fluent fI: 

 

Definition 8  (Negative-bounded inertial fluent) A 

Negative-bounded inertial fluent is defined as: 

del(f IN) ∈ O
t
(D1,D2) iff D1=D2 -{f I , f IN} 

 

An example, as in (Giunchiglia and Lifschitz, 1995), 

can be showed as: If some product is in the water, 

then it gets wet, and it will still be wet after comes out 

the water. So: 

 fIP = InWater(product) 

 fI = Wet(product) 

 

Inserting into database the InWater(product) fluent, 

the Wet(product) fluent will be inserted too. It can be 

notice that Wet(product) fluent is not dependent of 

InWater(product), because Wet(product) is still true 

independent on the existence or not of 

InWater(product) in database. 

 

Definition 9 (Dependent Fluents)  A fD is defined as 

a TR database rule and has the follow structure:  

 f D ← f I1 ∧ f I2 ∧ ... ∧ f In ; n>0 

 Where each  fIi can be negative or positive. 

 

In order to guarantee that the set of rules in database 

doesn't allow the looping definition, the definition of 

dependent fluents was made as the classical 

conjunction of inertial fluents instead of fD ← fD. 

 

The existence of a positive-bounded and negative-

bounded fluents is necessary for the same reason that 

dependent fluent is dependent of inertial fluent only, 

that is to avoid the looping rules. 

   

An example of dependent fluent, as in (Giunchiglia 

and Lifschitz, 1995): Consider a key that while being 

in downward, the human that passes in front of that 

machine is safety. So, 

 fD = safety (human) 

 fI = position (key, down) 

 safety (human) ← position (key, down). 

 

On this way, safety(human) will only be true if the 

key is downward, and if not, the safety of the human 

that is passing in front of that machine will be not 

guaranteed. This is different of the persistence 

feature, because the fluent safety(human) depends on 

the existence of the other to be true. 

The definitions need to be verified if they don't 

change the TR model, and consequently the inference 

rules and the TR soundness and completeness. 

 

Fig. 2.  The fluent schema in database and it's 

update. The dotted line represents the bounding 

property and arrows the flow.  

Negative-Bounded 

Inertial Fluent 

Inertial Fluent 

Inertial Fluent 

Inertial Fluent 

Inertial Fluent 



The TR model is based on paths, and these paths, as 

model definition, must be in accordance with O
d
 e O

t
 

as follows: 

 

1. If O
t
(D0,D1)|= α then P,D0,D1|= α ;where α is a 

TR formula. 

2. If O
d
(D0)|= α then  P,D0|=α  ; where α is a first 

order formula. 

 

All theories of TR are made with a model that has the 

compliance above. So, the TR model will not change 

with the definitions above because it needs to be in 

accordance with them.   

 

 

4.   NEW IMPLEMENTATION IN PROLOG 

 

The work of Santos (1997), in the equivalence proof 

of the semantic between pure PROLOG and the TR, 

used an algorithm called system Ξ, that is the 

implementation (representation) of the Transition 

Oracle in pure PROLOG. In addition, as Ξ extension, 

the system ΞR
 can be defined. However, to use the 

new system in PROLOG, the semantic equivalence 

analysis is necessary. So, following the Santos' steps, 

the new system ΞR
 can be defined. 

 

Definition 10 (System ΞR) A ΞR
 system is defined as 

being the following algorithm: 

 

onbktk(X). 

onbktk(X) :- X, 

pos(_):- 

neg(_):- 

insp(X) :- pos(X), onbktk(neg(X)). 

delp(X) :- neg(X), onbktk(pos(X)). 

delp(X). 
 

insb(X) :- not (db(ip(X))), insp(db(ip(X))). 

insb(X) :- db(ip(X)), delp(db(dp(X))). 
 

ins(X):-¬(db(ip(X))),bounded_ins(X), 

insp(db(ip(X))). 

ins(X) :- db(ip(X)), bounded_ins(X), delp(db(dp(X))). 

ins(X) :- ¬bounded_ins(X), insb(X). 
 

delb(X) :- db(ip(X)), insp(db(dp(X))). 
 

del(X) :- db(ip(X)), bounded_del(X), insp(db(dp(X))). 

del(X) :- ¬bounded_del(X), delb(X). 

 

To use the definitions of inertial and dependent 

fluents, the new rules in  ΞR
 system are necessary: 

 

Definition 11: Given a transition oracle, its 

translation function will complete the  ΞR
 as follows: 

1.   For each definition: fIP.ins ∈ O
t
(D1,D2) iff D1=D2 

+ {f I,f IP}, the rule will be included in ΞR
 system:  

 bounded_ins(fIP):- insb(fI) in PROLOG. 

 

2.   For each definition: fIN.del ∈ O
t
(D1,D2) iff D1=D2 

- {f I,f IN} the rule will be included in ΞR
 system:   

 bounded_del(fIN) :- delb(fI) in PROLOG. 

 

So, with the definitions above, the ΞR
 system will be 

given by the algorithm described in definition 10 and 

the bounded_ins and bounded_del rules introduced 

by definition 11 following the transition oracle 

conditions. 

 

 

4.1. Equivalence Proof  between  the TR and   

PROLOG for the ΞR
 system. 

 

Santos proved the equivalence between TR and 

PROLOG through the proof of the following three 

items: 

1. P ⇔ MP* 

2. P ⇔ P'  

3. P' ⇔ { Tp
j
 (I) ↑ k } 

 

The proof of the first item is presented in (Bonner 

and Kifer, 1995). The second item keeps the same 

proof of Santos (1997), because the translation 

function is the same, and the ΞR system still does not 

allow the double definition from the same transition 

oracle.  

 

In the third item, the proof is the following: Consider 

a formula φ such that P,D --- |= φ, it can be proved if 

after the translation of the P program in P' and  φ in 

φ', φ' ∈ { Tp
j (I) ↑ k }. As the new system ΞR will 

keep the same proof of Santos (1997), it happens 

because the new pre-interpretation J will consider the 

new predicates bounded_ins and bounded_del, and 

keeping the pos(_) and neg(_) predicates, the tree of 

possibilities from them will be such that follows the 

path of states. Therefore, the conclusion obtained is 

similar to Santos’ one, a path of the TR execution of 

length n will be equivalent to the interpretation given 

after k interactions of Tp
j
(I), such as k=n-1.  

 

Keeping the same equivalence proof, the system ΞR 

keeps the equivalence of the TR semantic and pure 

PROLOG semantic, and it also keeps the corollary 4 

and theorem 3. 

 

 

5.   CONCLUSION 

 

Due to the increase of systems in formal description, 

the TR stands out its sub-theory called serial-Horn 

that has inference rules which makes possible the 

computational application. Santos (1997) proved the 

semantic equivalence between serial-Horn version of 

the TR and the semantic of a pure PROLOG program 

acquired by translation function, making possible that 

any system formalized in serial-Horn version can be 

implemented in PROLOG.    

 



So that, many works in reasoning about actions area 

with a formalism based in TR were developed, 

showing the power of the TR in definition of actions 

(Bonner and Kifer, 1994; Bonner and Kifer, 1998; 

Santos, et al., 1996; Santos, 1996; Santos and Rillo, 

1997). Others logical theories were also used in this 

area, but they don't have a database treatment and 

inference rules to be implemented, as SITCAL and 

Temporal logic.  

 

The SITCAL (Levesque, et al., 1994; Lin, 1996) has 

some limitation to describe knowledge inherited from 

limitations of the first order logic. It is difficult to 

work with non-monotonic actions and still doesn't 

have a database treatment. The implementation of 

SITCAL in GOLOG (Levesque, et al., 1994) was not 

based in logical inference rules, what makes difficult 

the implementation of theories described in SITCAL 

in GOLOG language. Temporal logic have the same 

problem, it lacks in inference rules and database 

treatment. In addition, it still has a powerful theory to 

describe temporal knowledge, however it doesn't 

have a clean syntax, making difficult a good and easy 

interpretation of its formulas.    

 

The knowledge representation in TR, therefore, is 

objective and efficient, overcoming the first order 

logic and the temporal logic by the existence of a 

database and a pair of oracles that controls updates 

and what is true in database. In reasoning about 

actions, the TR allows the use of inertial and 

dependent fluent as the recently theories from the 

area (Giunchiglia and Lifschitz, 1995), that can be 

applied in production planning in manufacturing 

areas for a perfect definition of actions effects. It 

allows its implementation in PROLOG without losing 

the semantic equivalence with formal theory. 

 

These features make possible a clear and effective 

manifestation of inertial and dependent fluents, which 

are very important in the construction of the 

knowledge base for real applications. 
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