
AN EFFICIENT CASE-BASED PLANNING SYSTEM: PRELIMINARY RESULTS

FLAVIO TONIDANDEL1, MÁRCIO RILLO1,2

1 Universidade de São Paulo - Escola Politécnica
Av. Luciano Gualberto 158, trav3, São Paulo, SP, Brasil , 05508-900

2 Faculdade de Engenharia Industrial
Av. Humberto de A. Castelo Branco, 3972, São Bernardo do Campo, SP, Brasil , 09850-901

E-mails: flavio@lac.usp.br, rillo@lsi.usp.br

Abstract --Heuristic search planners, as FF and HSP systems, are new planning approaches which performance has been increasing
over the last years. One way to outperform the heuristic search planners is using the case-based planning approach, but new similarity
metrics must be investigated. This is because the old similarity rules used in previous case-based planning systems are not accurate
enough and, consequently, the systems will require more time to adapt a retrieved case than the heuristic search planners require to find
a solution. This paper examines the use of a new and more accurate similarity rule, called ADG, in a case-based planning system, and
confronts its results with the results of the FF heuristic search planner.

Key words – Artificial Intelli gence Planning ; Case-Based Reasoning ; Similarity Metric .

1 Introduction

In Artificial Intelli gence, the planning area is a rese-
arch field that is more related to intelli gent automati-
on field than others. Consequently, the interest of
industries in the planning area has been increasing
over the last years,. One factor that collaborates for
this increasing has been the results of the performance
of the planning systems based on heuristic search that
have been aplying with some degree of success to
problems in automation and factory production (Ho-
ffman; Nebel, 2001)(Bonet; Geffner, 1999).

The researches in planning area have been focu-
sing on how to improve the eff iciency of the heuristic
search planners. One way is by using previous execu-
ted plans to find a solution for a new problem. This
approach is named Case-based Planning (CBP), which
stores previous plan in a memory as cases.

Although the theoretical complexity of CBP sys-
tems and planning systems are NP-Hard (Nebel;
Koehler, 1995), some previous researches have shown
that the CBP systems outperform the results of gen-
erative planning systems (Koehler, 1996) (Muñhoz-
Avila, Hüllen, 1996)(Veloso, 1994). However, the
performance of a CBP system depends on the accuracy
of the similarity metric, which selects the most appro-
priate stored case to help in the new problem solution.
The most used similarity metrics is not designed to
take into account the effort of the case adaptation.
Consequently, CBP systems with one of these similar-
ity metrics will rarely outperform the new planning
approach based on heuristic search.

The purpose of this paper is to test a new similar-
ity rule, called ADG, in a CBP system in order to
surpass in performance the fastest planning system in
the AIPS’2000: the FF system (Hoffman;Nebel, 2001).

This paper is a further step of (Tonidandel, Rill o,
2001) towards a new CBP system, which uses the
ADG similarity rule (Tonidandel, Rill o, 2001) to
outperform the heuristic search planners. The follow-

ing section presents an overview of planning and CBP
systems. Section 3 presents the Transaction Logic
used to formalize the planning components. Section 4
shows the ADG similarity rule. The first results of the
CBP system with the use of ADG is analyzed and
compared with generative planning system in section
5. Finall y, the paper is concluded in section 6.

2 Case-Based Planning Systems

Most planning systems are generative planners. They
find a solution ‘ from scratch’ , i.e., they find a plan
that transforms the initial state into a desirable final
state. This kind of planner always starts the planning
process from the beginning, even when the same
problem was solved previously.

One way to avoid that the planner repeats the
planning process that was executed in some previous
planning is using case-based reasoning techniques
(Kolodner, 1993). The case-based reasoning (CBR)
was first used in planning by the system CHEF
(Hammond, 1989), which received the denomination
of a case-based planning (CBP) system.

A CBP system is distinguished by using a mem-
ory of previous executed plans. Each previous plan is
usually stored with specific features of the situation
that the plan was applied. These features are used to
indicate how much similar is the case to the solution
of a new problem. Usually, a similar case is retrieved
by a retrieval phase, which uses a similarity rule to
rank cases from the most to the less similar one.

After the choice of the most similar case, a CBP
system starts the adaptation process. In most of CBP
systems, this process is composed by a generative
planner that permits the modification of a previous
plan in order to find a new solution. This new solu-
tion, which is a plan, can be stored for future uses.
These three processes – storing, retrieving and adapt-
ing – completes the cycle of a common CBP system.

 In this cycle, the retrieval phase is mainly re-
sponsible for the eff iciency of the system. It must
search in a space of cases in order to choose a one case
that allows the system to solve a problem easil y.

Designing an accurate similarity metric that con-
siders the effort of the adaptation phase is necessary to
improve the system eff iciency. It means that the most
similar case must require less effort to be adapted.

Some adaptation-based similarity rules and tech-
niques were proposed in the past, such as RCR in
DIAL system (Leake;Kinley, 1997) and AGR (Adap-
tation-Guided retrieval) in DéjàVu system
(Smyth;Keane, 1998). However, all these similarity
rules and techniques depend on the application do-
main, and sometimes require some additional domain
information to estimate the effort of the adaptation
phase. Consequently, they can not be directed applied
in domain independent case-based planning.

On the other hand, domain independent rules of
similarity are usually designed as a difference between
states. This difference is a confrontation between (I) -
the initial state and (G)- the final state of a stored case
with (I’) – current state and (G’) - goal state of the
new problem. If I subsumes I’ and G subsumes G’
under some limits, the case is similar. However, this
approach is not a suitable measure to improve the
adaptation phase eff iciency because it is not a good
measure of the real adaptation effort.

Most of state-space CBP systems use this kind of
similarity rule. A state-space CBP system is designed
to search in a space of states. An alternative approach
to planning with states is the plan-space planning
systems (Muñhoz-Avila;Hüllen, 1996). They search in
a space of plans and they have no goals, but only tasks
to be achieved. Since tasks are semanticall y different
of goals, the similarity metric designed for plan-space
CBP systems is also different from the similarity rules
designed for state-space CBP systems.

An interesting similarity rule in plan-space ap-
proach is presented in the CAPLAN/CBC system
(Muñhoz-Avila;Hüllen, 1996). It extends the similar-
ity rule introduced by the PRODIGY/ANALOGY system
(Veloso, 1994) by using feature weights in order to
reduce the errors in the retrieval phase. These feature
weights are learned and recomputed according to the
performance of the previous retrieved cases.

The ADG (Action-Distance Guided) similarity
(Tonidandel; Rill o, 2001) differs from previous ap-
proaches. First, because it is designed for general
state-space CBP systems that are independent of the
domain. Second, it takes into account the adaptation
effort based on the distance between states. It does not
use any additional domain knowledge neither need to
learn any knowledge to perform an accurate estimate.
None of previous approach has all these features.

The purpose of this paper is, therefore, to perform
comparative tests of the performance of a CBP system
using the ADG similarity and the results of the FF

planner, which was the fastest planner in the AIPS’00
competition (Bacchus, 2000).

3 The Transaction Logic in Planning

The Transaction Logic (TR) (Boner; Kifer, 1995), in
its serial-Horn version, is an extension of the first-
order logic, by the introduction of the serial conjunc-
tion operator (⊗), e.g., α ⊗ β, which means "first
execute α, and then execute β".

It uses the following notation to describe a trans-
action: P, D0,...,Dn |= φ, where φ is a transaction for-
mula and P is a set of TR formulas called transaction
base. Each Di is a database state that is a set of first-
order formulas. Intuiti vely, P is a set of transaction
definitions, φ is an invocation of some of these trans-
actions; D0,...,Dn is a sequence of databases that repre-
sents an updating made by φ. This updating is per-
forming by ins(_) an del(_) predicates, that inserts and
deletes predicates of a state respectively. On the other
hand, a situation of a query is not given by a sequence
of databases, but by just one state. For example, P,Dk

|= qry(c), where c is true in Dk.
With all these formal features, TR is a suitable

logic to describe actions and plans for planning sys-
tems (Tonidandel, Rill o, 1998)(Tonidandel, Rill o,
2000)(Santos; Rill o, 1997). As TR is suitable for
planning, it is suitable for CBP system components as
well , because the case memory is a collection of plans.

In order to delimit the planning components in a
TR framework, some definitions are stated in accor-
dance with Santos and Rill o’s (1997) work. Consid-
ering L a language defined in serial-Horn version of
TR, the components of a planning system can be de-
fined as:

Definition 1 (State): The state D is a finite set of first-
logic predicates and it is represented in TR as a data-
base state. Each d ∈ D is called fact.

Two examples of state definition are given in Fig. 1.
States can be modified by actions, which are defined
as:

Definition 2 (Strips-li ke Actions): Considering A ⊆ L
as a set of action definitions, each α, α ∈ A, has the
following structure:

α
�

 pre(α) ⊗ delete(α) ⊗ add(α)
where
• pre(α) is a TR formula that is composed by qry(_)

predicates that represents the preconditions of
the action

• delete(α) is the delete li st of the action α. It rep-
resents all facts that will not be true after the ac-
tion execution.

• add(α) is the add li st of the action α. It represents
all facts that will be true after the action execu-
tion.

 (a) (b)

Figure 1. Two examples of state definition in block-world domain.

The result of an action execution is an updated state
D’ from D after the deletion and the insertion of the
delete and add li sts respectively. Any action α just can
be executed from a state D if pre(α) ⊆ D. For exam-
ple, consider the following action in the well -known
blocks-world domain:

unstack (x,y) � qry(handempty(x)) ⊗ qry(clear(x)) ⊗
qry(on(x,y)) ⊗ del(clear(x)) ⊗ del(handempty) ⊗
del(on(x,y)) ⊗ ins(holding(x)) ⊗ ins(clear(y)).

which means to get the block x from the top of block
y. Consider now a state D0 as the state described in
Fig. 1a and the state Df as the state described in Fig.
1b. Thus, unstack(A,B) can be satisfied in TR as: P,
D0...Df |= unstack(A,B). Where P is the set of actions
A and <D0...Df > is the state path from D0 to Df by the
application of del and ins predicates contained in
formula unstack(A,B).

 With the definitions of actions and state, it is
possible, following (Tonidandel; Rill o, 1998), to de-
fine plans, goals, and cases with the use of the TR:

Definition 3: (Plan) A plan δ = α1 ⊗ ... ⊗ αn is a TR
formula, where αi ∈ A; 1≤ i ≤ n.

Definition 4: (Goal) A goal Df is a TR formula and it
is a set of queries that represents the desirable final
state.

When the planner finds a desirable sequence of ac-
tions in order to reach Df, the plan can become a case
to be stored for future uses. A case is a modified plan
by the insertion of initial and final states features:

Definition 5: (Case) A case η is a TR rule:

ηη ← Wi ⊗ α1 ⊗ ... ⊗ αn ⊗ Wf,
where:
• ηη is a TR rule that represents a stored case.
• αi ∈ A; 1 ≤ i ≤ n, a plan defined by the planner

that satisfies a proposed goal.
• Wi is a set of queries in TR that represents the

precondition of the case.
• Wf is a set of queries in TR that represents the

pos-condition of the case

Figure 2. The values involved in ADG similarity metric. The Initial
Similarity Value (δI) is the distance between the Initial State D0 and the

Wi of a case. The Goal Similarity Value (δG) is the distance between
the Wf of a case and the desirable final state Df.

Intuiti vely, Wi is a set of those facts that are deleted by
the plan. It is equal to the result of the foot-printing
method used by PRODIGY/ANALOGY system (Veloso,
1994) and it represents the pre-condition of the plan.
The process of foot-printing the initial state is de-
scribed in (Veloso, 1994).

With respect to Wf, it is a set of those facts that
are inserted by the plan and will be presented in the
final state after the plan execution. There is no corre-
spondence to other cases features in any case-based
planning system.

4 The ADG similarity

The ADG similarity was purposed by Tonidandel and
Rill o (2001) to supply the lack of researches in accu-
rate similarity rule for case-based planning systems.
The ADG similarity is more accurate than the simi-
larity rules usually applied in CBP systems.

It is obtained by calculating two estimates of the
distance between states. Both estimates are based in a
number of actions. The first value is called initial
similarity value (δI), and it estimates the distance
between the current initial state, denoted by D0, and
the initial state features of the case, denoted by Wi.
The second value is called goal similarity value (δG)
and it is a distance estimate between the desirable
final state (Df) of the goal (def. 4) and the final state
features (Wf) of the case (Fig. 2).

The process of estimating the distance between
two states is obtained by the calculation of the heuris-
tic used by the FF planner. In fact, the ADG similarity
uses the same heuristic, which is used by FF planner
to guide the search, to determine the initial and final
similarity values.

The first step for determining the heuristic value
is to create a graph for a relaxed planning problem.
Hoffman (2001) explains that this relaxation is ob-
tained by ignoring the delete li st of actions. It allows
the graph to find a relaxed fixpoint that is composed
by all facts that are reached from the initial state.

As defined by Hoffman (2001), the graph is con-
stituted by layers that comprise alternative facts and
actions. The first fact layer is the initial state (D0).
The first action layer contains all actions whose pre-
conditions are satisfied in D0. Then, the add li sts of

D0
Df

Wi Wf
Plan

A Case

δδδδII δδδδGG

A

B C

A

B C

handempty
on(A,B)
ontable(C)
ontable(B)
clear(A)
clear(C)

holding(A)
ontable(C)
ontable(B)
clear(B)
clear(C)

these actions are inserted in the next fact layer to-
gether with all facts from the previous fact layer,
which leads to the next action layer, and so on. The
process keeps going on until it finds a relaxed fix-
point, i.e., when there are no more fact layers that are
different from previous fact layers.

Some useful information can be determined from
the relaxed fixpoint process. Following (Hoffman;
Nebel, 2001), they are:

Definition 6: level(d) := min {i | d ∈ Fi, where Fi is
the i th layer of facts }

Definition 7: level(α) := min {i | α ∈ Oi, where Oi is
the i th layer of actions }

The definitions 6 and 7 provide the order number of
the layer where each fact or action appears first. It
means that each fact, or action, is a membership of the
layer that it first appeared.

With the relaxed graph, it is possible to find a re-
laxed solution for any state that can be reached from
D0. This relaxed solution provides an estimate for the
optimal length of the not-relaxed solution (Hoffman,
2001). This estimate is suitable used to determine δI

and δG values.
The initial similarity value (δI) is directly ob-

tained by the determination of the relaxed solution
from D0 to Wi. First, each fact in Wi is initiali zed as a
goal in its correspondent layer, determined by level(_)
value. The process is then performed from the last
layer to the first layer, finding and selecting actions in
layer i-1 which their add-li st contains one or more of
goals initiali zed in layer i. Then, the preconditions of
the selected actions are initiali zed as new goals in
their correspondent layer.

The process stops when all unsatisfied goals are
in the first layer, which is exactly the initial state. The
estimated number of actions between initial state and
Wi is the number of action selected to satisfy the goals
in each layer. The algorithm to compute the relaxed
solution is shown in Fig. 3a, where the variable h is
used to count the number of selected actions. The
Initial Similarity Value is the result h of the function
relaxed_initial_length (Wi) after setting all marks of
all facts as false: δI = h.

In order to calculate the second value δG, it is
necessary to force the solution trace from D0 to con-
sider the actions in the case. To do this suitably, it is
necessary to maintain the values of each mark of each
fact after the performing of the Initial Similarity Value
calculation. It means that the function re-
laxed_final_length(Wi,Wf,Df) (Fig. 3b) will be called
using the marks changed by the re-
laxed_initial_length(Wi).
In addition, all marks of all facts in Wi must be set as
false and the marks of each fact in Wf must be set as
true in their correspondent layer. It is also necessary to
initiali ze Wi as a goal, because the trace must be cal-
culated through the actions of the case (Tonidandel,
Rill o, 2001).

As highlighted by Tonidandel and Rill o (2001),
the reason to keep unchanged all marks from δI cal-
culation is to avoid that the calculation of the Goal
Similarity Value incorporates redundant values li ke
the actions between D0 and Wi.

 The result of the function relaxed_final_length
(Wi,Wf,Df) of the algorithm presented in Fig. 3b is
the second part of the similarity metric: δG = h’ .

Therefore, with δI and δG defined, the ADG
similarity value can be determined: ADG = δδI + δδG.

relaxed_initial_length(G)

clear all Gi
for i:= 1 ... max do
 Gi := {g ∈ G |level(g) = i};
endfor
h:=0;
for i:= max ... 1 do
 for all g ∈ Gi, g False at time i do
 select αlevel=i-1 ; g ∈ add(α);
 h:=h+1;

for all d level ≠ 0 ∈ pre(α), d not True
at time i-1 do

 Glevel (d) := Glevel (d) ∪ {d};
 endfor
 for all d ∈ add(α) do
 mark d as True at time i-1 and i;
 endfor
 endfor
endfor
return h;

relaxed_final_length(Wi,Wf,Df)

G:= Df;
for each d ∈ Wi do

mark d as False at all levels;
G:=G+{d};

endfor
for each d ∈ Wf do

mark True at level(d) and level(d)-1
endfor
h’ := relaxed_initial_length(G);
return h’ ;

 (a) (b)
Figure 3. The ADG similarity algorithms: (a) The algorithm that computes the relaxed solution from a relaxed fixpoint, where G is the

target-state. It is extracted from (Hoffman, 2001); (b) The algorithm that extracts the distance between Wf and Df by considering the marks from
relaxed_initial_length(Wi).

It is important to note that ADG is a domain inde-
pendent approach and it is also designed to be used in
any retrieval phase of a state-space CBP system with
action-based cases, i.e., where cases and plans are
sequence of actions.

A case is useful when the ADG value is less than
the direct distance between D0 and Df, that can be
calculated with relaxed_initial_length(Df). If this
distance is less than the ADG value of any stored case,
a generative planner can be performed without the use
of any retrieved case. Otherwise, if the ADG value is
less than the direct distance between D0 and Df, the
use of a retrieved case is preferable.

Some CBP systems incorporate a modification
phase that can change the actions in the case in order
to find a solution near to optimal. However, this proc-
ess is more time expensive than the approach that
does not perform modifications in the case structure.

Therefore, the generative planning is used to
complete the retrieved case by finding a sequence of
actions that links D0 to the case and another sequence
that links the case to Df.

To complete a case, first the generative planner
finds, from scratch, a plan p1 that goes from the ini-
tial state to a new state where the Wi of the case is
satisfied. Then, all facts of the Wi are deleted from
this new state, and all facts of the Wf are inserted. The
resulted state is a new initial state for the generative
planner that, finall y, finds a plan p2 to satisfy the
desirable final state Df. The solution resulted is a
concatenation of p1, case actions and p2. This process
of completing is considered in the experiment below.

5 Experiments

Some tests are performed to show the improvement
provided by the use of the ADG similarity. In the tests,
the Blocks World domain with 5 blocks is used. It is a
simple domain, but it is one of the most diff icult do-
mains for planning systems. Blocks World definition
and problems can be found in (Bacchus, 2000).

In order to perform tests, a case-base with 100
cases in blocks world domain is generated by a case-
base seeding program. The tests also use the FF sys-
tem as the generative planner that will find a solution
from scratch.

The FF uses a heuristic to guide a hill -climbing
search engine. The heuristic is the estimate of the
distance between the current state and the goal state
(Df). It is calculated at each state in the searching.

Since the heuristic estimation is accurate, the
search engine is correctly directed by it and the solu-
tion plan can be easil y found. Some other heuristics as
goal ordering, states pruning techniques, and others
are also used in FF (Hoffman; Nebel, 2001).

In the experiment, the FF planner is used in the
adaptation phase of the CBP system to complete a case
and to find a solution. For the CBP system, two tests
are performed. One uses the ADG similarity, and
another uses the SNN (Standard Nearest Neighbor-
hood) (Kolodner, 1993) representing a general simi-
larity rule used in most CBP systems.

The SNN calculates first the normalized differ-
ence between the initial state and the Wi of a case.
Then, it calculates the normalized difference between
the desirable final state (Df) and Wf.

The similarity determination process takes less
than 0.01 seconds to search and find a similar case in
a memory with 100 cases for both calculations: ADG
and SNN. However, most of cases chosen by the ADG
are more accurate than the cases chosen by the SNN.
It permits that the CBP with the ADG similarity takes
less time to adapt the chosen cases.

All tests are performed in the same computer and
operational system. For each test, an initial state (D0)
and a final state (Df) are randomly generated. The FF
planner is applied to find, from scratch, a plan that
goes from D0 to Df. Its processing time is then anno-
tated. After, the CBP system is applied to search a
case that can find a solution more easil y in the case-
base, following both ADG and SNN values. The re-
trieved case is then completed using the FF planner.
The time is annotated for both.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 20

Length of minimal plan

T
im

e
(m

se
c)

FF from scratch

CBP with ADG

CBP with SNN

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 20

Length of minimal plan

T
im

e
(m

se
c)

From Scratch

ADG

 (a) (b)
Figure. 4. It shows the results of the experiment. (a) The processing time of the FF planner when plans from scratch, the CBP planner with ADG
and the CBP with SNN (b) The results of a CBP planner that mixes the use of previous cases with ADG similarity and the use of FF planner to

plan from scratch.

The Fig. 4a presents the results of the FF planner,
the CBP with ADG, and the CBP with SNN, after
performing 1000 tests. The curve of each method is
the medium value obtained for a solution of problems
with different length. The axis x represents the mini-
mal number of actions necessary to solve a problem.

When the solution of a problem requires only few
actions, the FF planner performs better. However,
when the solution becomes more complex and more
actions are necessary, the CBP system with ADG is
better. It is possible to note that the use of the CBP
with SNN does not perform as good as the CBP with
ADG. It confirms that old similarity rules that are
usually applied in CBP systems are not appropriate to
improve the performance of a heuristic search plan-
ner.

On the other hand, the use of the ADG similarity
permits that the CBP system performs better in diff i-
cult situations. Fig. 4b shows that if the CBP system
with ADG works together with FF planner, it is possi-
ble to create a system that have, in the worst case, the
same performance as FF planner.

The results show, therefore, that a CBP system
can improve the performance of the heuristic search
planners with the use of the ADG similarity metric.

6 Conclusion

This paper is the first result toward a complete and
eff icient case-based planning system that can also
outperform the fastest planning system of the AIPS’00
competition (Bacchus, 2000). The main part devel-
oped and presented in this paper is the use of the ADG
similarity rule (Tonidandel; Rill o, 2001) which is
more accurate than the similarity metric used by some
case-based planning systems.

The results presented in section 5 also show that a
CBP system that uses the ADG similarity a CBP sys-
tem can guarantee better performance than the FF
planner in hardest situations.

However, other tests with other planning domains
must be analyzed, and other methods must be incorpo-
rated in the CBP system in order to guarantee an im-
provement of the performance and the results.

Acknowledgments

This work is supported by FAPESP under contract
number 98/15835-9.

References

Bacchus, F. (2000). AIPS-2000 Planning Competiti on Re-
sults. Available in: http://www.cs.toronto.edu/aips2000

Bonet, B; Geffner, H. (1999). Planning as Heuristic Search:
New Results. Proceedings of European Conference on
Planning – ECP’99. Durham, UK.

Bonner, A.J., Kifer, M.: (1995) Transaction logic program-
ming. Technical Report, CSRI-323, Department of
Computer Science, University of Toronto.

Hammond, K. (1989). Case-Based Planning:Viewing Plan-
ning as a Memory Task. Academic Press.

Hoffman, J.; Nebel, B. (2001). The FF Planning System:
Fast Plan Generation Through Heuristic Search. Jour-
nal of Artifi cial Intelli gence Research – JAIR, vol. 14,
pp 253-302.

Kolodner, J. (1993). Case-Based Reasoning . Morgan
Kauffmann.

Koehler, J. (1996). Planning from Second Principles. Artifi-
cial Intelli gence, Elsevier Science, no. 87, pp. 148-187.

Leake, D., Kinley, A., Wilson, D. (1997). Case-Based
Similarity Assessment: Estimating Adaptabilit y from
Experience. Proceedings of 14th National Conference
on Artifi cial Intelli gence – AAAI’ 97. AAAI Press.

Muñoz-Avila, H.,Hüllen, J. (1996). Feature Weighting by
Explaining Case-Based Planning Episodes. In: Smith,
I., Faltings, B. (Eds) Proceedings of 3rd European
Workshop on Case-Based Reasoning (EWCBR’96).
Lecture Notes in Artificial Intell igence, Springer-
Verlag, vol 1168. pp. 280-294.

Nebel,B. ; Koehler, J. (1995). Plan reuse versus plan gen-
eration: A theoretical and empirical analysis. Artifi cial
Intelli gence Special Issue on Planning and Scheduling,
no. 76, pp.427-454.

Santos, M., Rill o, M. (1997). Approaching the Plans are
Programs Paradigm using Transaction Logic. In: Steel,
S., Alami,R (Eds) Proceedings of 4th European Con-
ference on Planning – ECP’97. Lecture Notes in Artifi-
cial Intelli gence, Springer-Verlag, vol. 1348, pp. 377-
389.

Smyth, B., Keane, M. (1998). Adaptation-Guided Retrieval:
Questioning the Similarity Assumption in Reasoning.
Journal of Artifi cial Intelli gence, vol. 102(2), pp. 249-
293.

Tonidandel, F, Rill o, M. (1998). Case-Based Planning in
Transaction Logic Framework. Proceedings of Work-
shop on Intelli gent Manufacturing Systems (IMS’98).
Gramado, Brasil , Elsevier Science. pp. 281-286.

Tonidandel, F., Rill o, M. (2000). Handling Cases and the
Coverage in a Limited Quantity of Memory for Case-
Based Planning Systems. In: Sichman, J., Monard, C.
(Eds). Proceedings of IBERAMIA/SBIA 2000. Lecture
Notes in Artificial Intelli gence, Springer-Verlag, vol
1952, pp. 23-32.

Tonidandel, F.; Rill o, M. (2001). An Accurate Adaptation-
Guided Similarity Metric for Case-Based Planning In:
Aha, D., Watson, I. (Eds.) Proceedings of 4th Interna-
tional Conference on Case-Based Reasoning (ICCBR-
2001). Lecture Notes in Artificial Intelli gence,
Springer-Verlag, vol 2080, pp. 531-545.

Veloso, M. (1994). Planning and Learning by Analogical
Reasoning. Lecture Notes in Artificial Intelli gence, vol
886. Springer-Verlag.

