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Abstract --Heurigtic search gdanners, as FF and HSP systems, are new planning approaches which performance has been increasing
over the last years. One way to autperform the heuristic search pannersis using the ase-based panning approach, but new simil arity
metrics must be investigated. This is because the old similarity rules used in previous case-based panning systems are not accurate
enough and, consequently, the systems will require more time to adapt a retrieved case than the heuristic search dannersrequire to find
a solution. This paper examines the use of a new and more accurate simil arity rule, called ADG, in a case-based panning system, and

corfrontsits results with the results of the FF heuristic search planner.
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1 Introduction

In Artificial Intdli gence the planning area is a rese-
arch field that is more related to intelli gent automati-
on fidd than others. Consequently, the interest of
industries in the planning area has been increasing
over the last years,. One factor that collaborates for
thisincreasing has been the results of the performance
of the planning systems based on heuristic search that
have bee aplying with some degree of success to
problems in automation and factory production (Ho-
ffman; Nebel, 2001)(Bonet; Geffner, 1999.

The researches in planning area have been focu-
sing on how to improve the dficiency of the heuristic
search planners. One way is by using previous exeau-
ted plans to find a solution for a new problem. This
approach is named Case-based Planning (CBP), which
stores previous plan in a memory as cases.

Although the theoretical complexity of CBP sys-
tems and panning sysems are NP-Hard (Nebd;
Koehler, 1995, some previous researches have shown
that the CBP systems outperform the results of gen-
erative planning systems (Koehler, 1996 (Mufihoz-
Avila, Hillen, 1996(Veloso, 1994. However, the
performance of a CBP system depends on the accuracy
of the similarity metric, which seleds the most appro-
priate stored case to help in the new problem solution.
The most used similarity metrics is not designed to
take into acoount the dfort of the ase adaptation.
Consequently, CBP systems with one of these similar-
ity metrics will rarely outperform the new planning
approach based on heuristic search.

The purpose of this paper isto test a new similar-
ity rule, called ADG, in a CBP system in order to
surpassin performance the fastest planning system in
the AIPS 2000 the FF system (Hoff man;Nebel, 2007).

This paper is afurther step of (Tonidandel, Rill o,
200]) towards a new CBP system, which uses the
ADG smilarity rule (Tonidandd, Rillo, 2001 to
outperform the heuristic search planners. The foll ow-

ing sedion presents an overview of planning and CBP
systems. Sedion 3 presents the Transaction Logic
used to formali ze the planning components. Sedion 4
shows the ADG similarity rule. The first results of the
CBP system with the use of ADG is analyzed and
compared with generative planning system in sedion
5. Finally, the paper is concluded in sedion 6.

2 Case-Based Planning Systems

Most planning systems are generative planners. They
find a solution ‘from scratch’, i.e., they find a plan
that transforms the initial state into a desirable fina
state. This kind of planner always garts the planning
process from the beginning, even when the same
problem was lved previoudy.

One way to avoid that the planner repeats the
planning processthat was exeauted in some previous
planning is using case-based reasoning techniques
(Kolodner, 1993. The @se-based reasoning (CBR)
was first used in planning by the system CHEF
(Hammond, 1989, which receved the denomination
of a case-based planning (CBP) system.

A CBP system is distinguished by using a mem-
ory of previous exeauted plans. Each previous plan is
usualy stored with spedfic features of the situation
that the plan was applied. These features are used to
indicate how much similar is the @se to the solution
of a new problem. Usually, a similar case is retrieved
by a retrieval phase, which uses a similarity rule to
rank cases from the most to the less émilar one.

After the doice of the most similar case, a CBP
system starts the adaptation process In most of CBP
systems, this process is composed by a generative
planner that permits the modification of a previous
plan in order to find a new solution. This new solu-
tion, which is a plan, can be stored for future uses.
These three processes — storing, retrieving and adapt-
ing —completes the g/cle of acommon CBP system.



In this cycle, the retrieval phase is mainly re-
sponsible for the dficiency of the system. It must
search in a space of casesin order to choose a one ase
that all ows the system to solve a problem easily.

Designing an accurate simil arity metric that con-
sidersthe dfort of the adaptation phase is necessary to
improve the system efficiency. It means that the most
similar case must require lesseffort to be adapted.

Some adaptation-based similarity rules and tech-
niques were proposed in the past, such as RCR in
DIAL system (LeakeKinley, 1997 and AGR (Adap-
tation-Guided retrieval) in  Dgavu system
(Smyth;Keane, 1998. However, al these similarity
rules and techniques depend on the application do-
main, and sometimes require some additional domain
information to estimate the dfort of the adaptation
phase. Consequently, they can not be direded applied
in domain independent case-based planning.

On the other hand, domain independent rules of
similarity are usually designed as a diff erence between
states. This differenceis a confrontation between (1) -
theinitial state and (G)- the final state of a stored case
with (I') — current state and (G’) - goal state of the
new problem. If | subsumes I' and G subsumes G’
under some limits, the @ase is smilar. However, this
approach is not a suitable measure to improve the
adaptation phase dficiency because it is not a good
measure of the real adaptation effort.

Most of state-space CBP systems use this kind of
similarity rule. A state-space CBP system is designed
to search in a space of states. An alternative approach
to planning with states is the plan-space planning
systems (Mufhoz-Avil a;Hullen, 1996. They search in
a spaceof plans and they have no goals, but only tasks
to be achieved. Since tasks are semantically different
of goals, the similarity metric designed for plan-space
CBP systems is also different from the simil arity rules
designed for state-space CBP systems.

An interesting similarity rule in plan-space ap-
proach is presented in the CAPLAN/CBC system
(Mufihoz-Avila;Hullen, 1996. It extends the similar-
ity rule introduced by the PRODIGY/ANALOGY system
(Veloso, 1999 by using feature weights in order to
reducethe arorsin the retrieval phase. These feature
weights are learned and recomputed according to the
performance of the previous retrieved cases.

The ADG (Action-Distance Guided) similarity
(Tonidandel; Rillo, 2001) differs from previous ap-
proaches. First, because it is designed for general
state-space CBP systems that are independent of the
domain. Sewnd, it takes into acoount the adaptation
effort based on the distance between states. It does not
use any additional domain knowledge neither need to
learn any knowledge to perform an acaurate estimate.
None of previous approach has al these features.

The purpose of this paper is, therefore, to perform
comparative tests of the performance of a CBP system
using the ADG similarity and the results of the FF

planner, which was the fastest planner in the AIPS00
competition (Bacchus, 2000.

3 TheTransaction Logicin Planning

The Transaction Logic (TR) (Boner; Kifer, 1995, in
its srial-Horn version, is an extension of the first-
order logic, by the introduction of the serial conjunc-
tion operator (), eg., a O B, which means "first
exeaute a, and then execute 3".

It uses the following notation to describe a trans-
action: P, Dq,...D, |5 @ where @is a transaction for-
mula and P is a set of TR formulas called transaction
base. Each D; is a database state that is a set of first-
order formulas. Intuitively, P is a set of transaction
definitions, @is an invocation of some of these trans-
actions; Dq,...,D, isa sequence of databases that repre-
sents an updating made by @ This updating is per-
forming by ins( ) an del( ) predicates, that inserts and
deletes predicates of a state respedively. On the other
hand, a situation of a query is not given by a sequence
of databases, but by just one state. For example, P,Dy
|= ary(c), wherecistruein Dy.

With all these formal features, TR is a suitable
logic to describe actions and plans for planning sys-
tems (Tonidandel, Rillo, 1998(Tonidandd, Rillo,
2000(Santos; Rillo, 1997. As TR is aiitable for
planning, it is auitable for CBP system components as
well, because the ase memory is a coll ection of plans.

In order to delimit the planning components in a
TR framework, some definitions are stated in accoor-
dance with Santos and Rillo’s (1997 work. Consid-
ering L a language defined in serial-Horn version of
TR, the components of a planning system can be de-
fined as:

Definition 1 (State): The state D is a finite set of first-
logic predicates andit is represented in TR as a daa-
base state. Each d [7D iscalled fact.

Two examples of state definition are given in Fig. 1.
States can be modified by actions, which are defined
as.

Definition 2 (Strips-like Actions): Considering A [7 L

as a set of action dcefinitions, each a, a [J A, has the

following structure;

a € pre(a) [ delete(a) [J adda)

where

» pre(a)isa TR formula that is composed by gry( )
predicates that represents the precondtions of
the action

* delete(a) isthe delete list of the action a. It rep-
resents all facts that will not be true after the ac-
tion exeation.

* adda)isthe addlist of the action a. It represents
all facts that will be true after the action exew-
tion.
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Figure 1. Two examples of ate definitionin Hock-world damain.

The result of an action exeaution is an updated state
D’ from D after the deletion and the insertion of the
delete and add lists respedively. Any action a just can
be exeauted from a state D if pre(a) O D. For exam-
ple, consider the following action in the well-known
blocks-world domain:

unstack (x,y) € gry(handempty(x)) 7 gry(clear(x)) [J
ary(on(x,y)) [J del(clear(x)) [J del(handempty) [J
del(on(x,y)) [Jins(hdding(x)) [J ins(clear(y)).

which means to get the block x from the top of block
y. Consider now a state D, as the state described in
Fig. 1a aad the state Df as the state described in Fig.
1b. Thus, unstack(A,B) can be satisfied in TR as. P,
Do...Df |= unstack(A,B). Where P is the set of actions
A and <D,...Df > isthe state path from D, to Df by the
application of del and ins predicates contained in
formula unstack(A,B).

With the definitions of actions and dtate, it is
possble, following (Tonidandd; Rillo, 1998, to de-
fine plans, goals, and cases with the use of the TR:

Definition 3: (Plan) Apland=a, [0 ... D a,isa TR
formula, where a; JA; 1<i <n.

Definition 4: (Goal) A god Df isa TR formula andit
is a set of queries that represents the desirable final
state.

When the planner finds a desirable sequence of ac-
tionsin order to reach Df, the plan can become a case
to be stored for future uses. A case is a modified plan
by the insertion of initial and final states features:

Definition 5; (Case) Acase nisaTRrule:

n W ODa, O... 0 a, O0W,

where:

* nisaTRrulethat represents a stored case.

e o [JA;1<i=<n, apan dcfined by the planner
that satisfiesa proposed god.

« Wi isa set of queriesin TR that represents the
precondtion d the case.

« W is a set of queries in TR that represents the
pas-condtion d the case

Figure 2. Thevauesinvdved in ADG simil arity metric. Thelnitial
Smilarity Value (§) isthe distance between the Initial State Do andthe
W of a case. The Goal Similarity Value (dg) isthe distance between
the W of a case and the desirable final state Df.

Intuitively, Wl is a set of those facts that are deleted by
the plan. It is equal to the result of the foat-printing
method used by PrRODIGY/ANALOGY system (Ve 0so,
1994 and it represents the pre-condition of the plan.
The process of fod-printing the initial state is de-
scribed in (Ve oso, 1994).

With resped to W, it is a set of those facts that
are inserted by the plan and will be presented in the
final state after the plan exeaution. There is no corre-
spondence to ather cases features in any case-based
planning system.

4 The ADG similarity

The ADG similarity was purposed by Tonidandel and
Rillo (200)) to suppy the lack of researches in accu-
rate similarity rule for case-based planning systems.
The ADG similarity is more accurate than the simi-
larity rules usually applied in CBP systems.

It is obtained by calculating two estimates of the
distance between states. Both estimates are based in a
number of actions. The first value is called initial
similarity value (9), and it estimates the distance
between the arrent initial state, denoted by Do, and
the initial state features of the @se, denoted by W.
The second value is called god similarity value (&)
and it is a distance etimate between the desirable
final state (Df) of the goal (def. 4) and the final state
features (W) of the ase (Fig. 2).

The process of estimating the distance between
two states is ohtained by the @lculation of the heuris-
tic used by the FF planner. In fact, the ADG simil arity
uses the same heuristic, which is used by FF planner
to guide the search, to determine the initial and final
simil arity values.

The first step for determining the heuristic value
is to create a graph for a relaxed planning problem.
Hoffman (2001) explains that this relaxation is ob-
tained by ignoring the delete list of actions. It allows
the graph to find a relaxed fixpoint that is composed
by al factsthat are reached from theinitial state.

As defined by Hoffman (2001), the graph is con-
stituted by layers that comprise aternative facts and
actions. The first fact layer is the initial state (D).
The first action layer contains all actions whose pre-
conditions are satisfied in Dy. Then, the add lists of



relaxed_initial _|ength(Q

clear all G
for iik=1.. max do
Gi :={g O G|level(g) = i};
endf or
h:=0;
for iik=max...1 do
for allg 0 Gi, g False at time i do
select  deve=ia ;g O add( a);
h:=h+1;
for all devwe zo0 O pre( a),dnotTrue
attime i-1 do
Gevel (d) = Gevel @ O {d};
endf or
for alld 0 add( a) do
mark d as True at time i-1 and i;
endf or
endf or
endf or
return h;

rel axed_final | ength(W, W, Df)

G:=Df;
for eachd 0O Wi do

mark d as False at all levels;
G:=G+{d};

endf or
for eachd 0O Wf do

mark True at level(d) and level(d)-1

endf or
h':=relaxed_initial _length(Q;
return h';

@

(b)

Figure 3. The ADG simil arity algorithms: (a) The algorithm that computes the relaxed solution from a relaxed fixpaint, where G isthe
target-gtate. It is extracted from (Hoff man, 2001); (b) The algorithm that extracts the distance between WF and Df by considering the marks from
relaxed initial lenath(VW).

these actions are inserted in the next fact layer to-
gether with all facts from the previous fact layer,
which leads to the next action layer, and so an. The
process kegps going on until it finds a relaxed fix-
point, i.e., when there are no more fact layers that are
different from previous fact layers.

Some useful information can be determined from
the relaxed fixpoint process Following (Hoffman;
Nebel, 20017), they are:

Definition 6: levd(d) := min {i | d JF;, where F; is
thei™ layer of facts}

Definition 7: levd(a) := min{i | a JO;, where G, is
thei™ layer of actions}

The definitions 6 and 7 provide the order number of
the layer where each fact or action appears first. It
means that each fact, or action, is a membership of the
layer that it first appeared.

With the relaxed graph, it is posgbleto find are-
laxed solution for any state that can be reached from
Do. This relaxed solution provides an estimate for the
optimal length of the not-relaxed solution (Hoffman,
200]). This estimate is suitable used to determine §
and & values.

The initial similarity value (9) is diredly ob-
tained by the determination of the relaxed solution
from Dgto WA. First, each fact in Wi isinitialized as a
goal in its correspondent layer, determined by levd( )
value. The process is then performed from the last
layer to thefirst layer, finding and seleding actionsin
layer i-1 which their add-list contains one or more of
goals initialized in layer i. Then, the preconditions of
the sdleded actions are initialized as new goals in
their correspondent layer.

The process $ops when all unsatisfied goals are
in the first layer, which is exactly theinitial state. The
estimated number of actions between initial state and
W isthe number of action seleded to satisfy the goals
in each layer. The algorithm to compute the relaxed
solution is shown in Fig. 3a, where the variable h is
used to count the number of sdeded actions. The
Initial Smilarity Value is the result h of the function
relaxed_initial_length (Wi) after setting dl marks of
all factsasfalse: § = h.

In order to calculate the second value &, it is

necessary to force the solution trace from Dy to con-
sider the actions in the @se. To do this siitably, it is
necessary to maintain the values of each mark of each
fact after the performing of the Initial Similarity Value
calculation. It means that the function re-
laxed_final_length(Wi,Wf,Df) (Fig. 3b) will be alled
usng the maks <changed by the re
laxed_initial_length(Wi).
In addition, all marks of all factsin Wi must be set as
false and the marks of each fact in WF must be set as
truein their correspondent layer. It is also necessary to
initialize Wi as a goal, because the trace must be @l-
culated through the actions of the ase (Tonidandel,
Rill o, 2001).

As highlighted by Tonidandd and Rillo (2001),
the reason to keg unchanged all marks from § cal-
culation is to avoid that the alculation of the Goa
Smilarity Value incorporates redundant values like
the actions between Dy and W.

The result of the function relaxed_final_length
(Wi,Wf,Df) of the algorithm presented in Fig. 3b is
the second part of the simil arity metric: & = h'.

Therefore, with § and & defined, the ADG
similarity value @n be determined: ADG = § + &,
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Figure. 4. It showsthe results of the experiment. (a) The processng time of the FF planner when pans from scratch, the CBP planner with ADG
and the CBP with SNN (b) The results of a CBP planner that mixesthe use of previous caseswith ADG simil arity and the use of FF planner to
plan from scratch.

It is important to note that ADG is a domain inde-
pendent approach and it is also designed to be used in
any retrieval phase of a state-space CBP system with
action-based cases, i.e,, where @ases and pans are
sequence of actions.

A case is useful when the ADG value is lessthan
the direa distance between D, and Df, that can be
caculated with relaxed initial_length(Df). If this
distanceislessthan the ADG value of any stored case,
a generative planner can be performed without the use
of any retrieved case. Otherwise, if the ADG value is
less than the direa distance between Dy and Df, the
use of aretrieved caseis preferable.

Some CBP systems incorporate a modification
phase that can change the actions in the Gase in order
to find a solution near to gptimal. However, this proc-
ess is more time epensive than the approach that
does not perform modificationsin the Gase structure.

Therefore, the generative planning is used to
complete the retrieved case by finding a sequence of
actions that links Dy to the @se and another sequence
that linksthe @se to Df.

To complete a casg, first the generative planner
finds, from scratch, a plan pl that goes from the ini-
tial state to a new state where the Wi of the @ase is
satisfied. Then, all facts of the Wi are deleted from
this new state, and all facts of the Wf are inserted. The
resulted state is a new initial state for the generative
planner that, finally, finds a plan p2 to satisfy the
desirable final state Df. The solution resulted is a
concatenation of pl, case actions and p2. This process
of completing is considered in the experiment below.

5 Experiments

Some tests are performed to show the improvement
provided by the use of the ADG simil arity. In the tests,
the Blocks World domain with 5 blocksisused. It isa
simple domain, but it is one of the most difficult do-
mains for planning systems. Blocks World definition
and problems can be found in (Bacchus, 2000.

In order to perform tests, a case-base with 100
cases in blocks world domain is generated by a case-
base sealing program. The tests also use the FF sys
tem as the generative planner that will find a solution
from scratch.

The FF uses a heurigtic to guide a hill -climbing
search engine. The heurigtic is the etimate of the
distance between the airrent state and the goal state
(Df). It iscalculated at each state in the searching.

Since the heuristic estimation is accurate, the
search engine is corredly direded by it and the solu-
tion plan can be essily found. Some cother heurigtics as
goa ordering, states pruning techniques, and others
are also used in FF (Hoffman; Nebel, 2001).

In the experiment, the FF planner is used in the
adaptation phase of the CBP system to complete a case
and to find a solution. For the CBP system, two tests
are performed. One uses the ADG similarity, and
another uses the SNN (Sandad Nearest Neighba-
hood (Kolodner, 1993 representing a general simi-
larity rule used in most CBP systems.

The SNN calculates first the normalized dffer-
ence between the initial state and the Wi of a case.
Then, it calculates the normalized dfference between
the desirable final state (Df) and WE.

The similarity determination process takes less
than 0.01 seands to search and find a similar case in
a memory with 100 cases for bath calculations: ADG
and SNN. However, most of cases chosen by the ADG
are more acaurate than the @ses chosen by the SNN.
It permits that the CBP with the ADG simil arity takes
lesstime to adapt the hosen cases.

All tests are performed in the same computer and
operational system. For each test, an initial state (Do)
and afinal state (Df) are randomly generated. The FF
planner is applied to find, from scratch, a plan that
goes from Dy to Df. Its processng time is then anno-
tated. After, the CBP system is applied to search a
case that can find a solution more esily in the @se-
base, following bath ADG and SNN values. The re-
trieved case is then completed using the FF planner.
Thetimeisannotated for bath.



The Fig. 4a presents the results of the FF planner,
the CBP with ADG, and the CBP with SNN, after
performing 1000tests. The airve of each method is
the medium value ohtained for a solution of probems
with different length. The axis X represents the mini-
mal number of actions necessary to solve a problem.

When the solution of a problem requires only few
actions, the FF planner performs better. However,
when the solution becomes more mwmplex and more
actions are necessary, the CBP system with ADG is
better. It is posshble to note that the use of the CBP
with SNN does not perform as goad as the CBP with
ADG. It confirms that old similarity rules that are
usualy applied in CBP systems are not appropriate to
improve the performance of a heuristic search plan-
ner.

On the other hand, the use of the ADG similarity
permits that the CBP system performs better in diffi-
cult situations. Fig. 4b shows that if the CBP system
with ADG works together with FF planner, it is poss-
ble to create a system that have, in the worst case, the
same performanceas FF planner.

The results dow, therefore, that a CBP system
can improve the performance of the heuristic search
planners with the use of the ADG similarity metric.

6 Conclusion

This paper is the first result toward a complete and
efficient case-based planning system that can aso
outperform the fastest planning system of the AIPS00
competition (Bacchus, 2000. The main part deve-
oped and presented in this paper isthe use of the ADG
similarity rule (Tonidandd; Rillo, 2001) which is
more acaurate than the simil arity metric used by some
case-based planning systems.

The results presented in sedion 5 also show that a
CBP system that uses the ADG similarity a CBP sys-
tem can guarantee better performance than the FF
planner in hardest situations.

However, other tests with other planning domains
must be analyzed, and other methods must be incorpo-
rated in the CBP system in order to guaranteean im-
provement of the performance and the results.
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