
In: 5th IFAC Workshop on Intelligent Manufacturing Systems (IMS´98) – Gramado -RS – Brazil - November 9-11 1998. Elsevier Science 1999

1. INTRODUCTION

In manufacturing areas, the importance of planning
systems is clear for many researches, because many
processes are made under some sequence of defined
actions, which characterize a plan.

Many works in planning area are not made under
strict formalism, what makes it difficult to
understand its fundamental procedures, limitations
and theoretical complexity. It is hard to know how it
works with other situations besides the previously
tested ones. The formalization is essential for the
construction of a sound and complete system that
works well in any situation. However, the systems
based on formalism make harder their computational
applicability, because many formalization theories
are hard to translate in any computational language.
Therefore, the use of a kind of logic that has sound
and complete inference rules is essential to turn the
formal theory into an implemented system.

So that, many logical theories were proposed, but
they always lack a treatment of updates or a
computational way. Some logical theories have a
clean fashion as first-order logic, but it is not so
good to work with nonmonotonic reasoning. Others

have a powerful theory, but have a difficult
computational implementation (Koehler, 1996). In
order to avoid these problems, this paper will
introduce the use of Transaction Logic (Bonner and
Kifer, 1995), abbreviated TR, as the formal theory
that provides a sound and complete implementation
through its inference rules and its update theory. It
has a clean syntax to represent knowledge, actions
and the world state.

The use of Case-Based planning (CBP) (Hammond,
1989) is justified by the relative efficiency improved
in planning by reuse and modification of complete
existing plans (Koehler, 1996). In planning, if a
planner receives the same planning problem, it will
repeat the same operations and will give the same
answer, and Case-Based Planning systems try to
overcome this waste of time to do the same process
through the use of previously generated plans.

The Case-Based planning formalization approach
has very few studies. One of them is the MRL system
(Koehler, 1996) that has the same difficulty of
others formalization systems about its computational
implementation, and uses a kind of modal logic that
doesn't have a clean syntax. Differently, a CBP
system formalized with TR, besides introducing a

CASE-BASED PLANNING IN
TRANSACTION LOGIC FRAMEWORK

Flavio Tonidandel and Márcio Rillo

 Universidade de São Paulo
 Divisão de Automação e Inteligência Artificial - DAIA

 Av. Luciano Gualberto, 158, trav3 - São Paulo -SP - Brazil
05508-900 e-mail: {flavio,rillo}@lsi.usp.br

Abstract: This work stands out the use of Transaction Logic (TR) in case-based
planning. The TR provides a correct and complete logical theory based planner that
can be computationally implemented keeping the formal theory semantic. The TR is
efficient on states treatment besides to create a retriever and cases adaptation easier
than others formalized systems. Transaction Logic provides a clean fashion in
knowledge representation and its semantic based on path of states is next to planning
necessities, making possible the formalization of whole case-based planning system
without the existence of the semantic gap between theory and implementation.
Copyright © 1998 IFAC

Keywords: Artificial intelligence, computational methods, formal specification,
planning, problem solvers.

clean fashion logical theory for knowledge
representation, it still makes possible the theoretical
control of the whole planning system, without the
existence of a semantic gap between theory and
computational implementation.

Therefore, this work stands out the use of the TR in
case-based planning as a tool to provide a correct
and complete logical theory based planner. In
addition, the TR provides efficiency in state
treatment besides to create a retriever and adaptation
of cases easier than others formalized systems.

2. OVERVIEW OF TRANSACTION LOGIC

The Transaction Logic (TR) is a logic proposed by
Bonner and Kifer (1995) that specifies formalism
about database update phenomena, path of execution
and sequential procedure. In planning, these features
are very common, firstly observed by Rillo (1994),
because it can be seen as a process that, after
executing a plan of action, it updates the world
model. In TR can be described actions and formally
executed through the inference system with database
updating.

The TR is an extension of first-order logic, with the
introduction of a new operator called serial
conjunction (⊗). This operator represents a
procedural activity, a transaction, where α ⊗ β
means "first execute α, and then execute β". With
this new operator, can be specified sequence of
actions easier than other logics.

To describe a transaction, consider this notation:
P,D0,...,Dn |= φ, where P is called transaction base,
that is a set of TR formulas, like is φ. Although, each
Di is a set of first-order formula, where each formula
is called literal, that represents the database state.
Intuitively, P is a set of transactions definitions, φ is
an invocation of these transactions, and D0,...,Dn is
the sequence of database, representing all the states
of transaction execution. For example, calling the
transaction φ, the database goes from initial state D0

to final state Dn. However, if φ is a query, the
database will not change, and it can be represented
by P,D |= φ.

In TR, a database state is defined by data oracle Od.
For each state identifier, i, Od(i) is a mapping of i
and a set of first-order formulas that represent the
truth of database state. Depending on the application
domain, different kinds of data oracles can be
specified. The more common is the generalized-
Horn data oracle, where Od(i) is a set of generalized-
Horn formula1, and it will be used in this paper. A

query is controlled by Od. For example, consider a
literal called onfloor that is true in state Dk. So,
onfloor ∈ Od(Dk) and P,Dk |= onfloor.

The TR also works with updates, and the
specification of transition is done through transition
oracle, Ot, that is a mapping function between states
pairs and a set of atomic formulas. In this paper,
transition will be defined by ins and del predicates.
For example: ins(c) and del(d), where, formally:
ins(c) ∈ Ot(D,D+{c}) and del(d) ∈ Ot(D,D-{d}), and
P,D,D+{c}, D+{c}-{d} |= ins(c) ⊗ del(d).

2.1. Proof Theory

Unlike others logics, the TR semantic is based on
paths, and not on arcs between states like modal
logics. In TR, a state sequence is verified by states
path executed by a transaction, i.e.:P,D1,...,Dn |= φ ;
where φ is some transaction formula, where
<D1,...,Dn> is a path of states.

The TR has a more restrictive theory that has sound
and complete proof theory with the definition of
axiom and inference rules. Called serial-Horn
version, this restrictive theory uses only the serial
conjunction operator ⊗, and has the same
characteristics of Horn formula in first-order logic. It
consists in transaction base P, which is a set of
serial-Horn formula, and of database D, which is a
set of first-order formula.

With this restrictive version, an inference system can
be defined in order to turn the TR into
computational language. The Serial-Horn version
has three inference rules, that defines deduction for
queries, updates and rules in transaction base P
(Bonner and Kifer, 1995). These inference rules are
necessary to implement the TR deduction and the
executional path.

The implementation of inference rules can be made
in PROLOG language. The work of Santos (Santos,
1997) proves the equivalence of the TR serial-horn
version semantic, with the use of predicates ins(_)
and del(_) by transition oracle, and its
implementation in PROLOG. It provided an
additional contribution with a demonstration that a
representation of the TR serial-horn version can be
translated in one, and only one, pure PROLOG
program.

3. CORRECT AND COMPLETE PLANNERS

Based on (Santos and Rillo, 1997), consider L an
serial-Horn version language of TR, an instance of

1 Generalized-Horn formulas are first-order formulas with negation.

an action system ∑ = <W,K,A> is a triple, with the
world state W, the domain rules K and the set of
action A . Where W ⊆ L is a set of literal described
in first order logic, K ⊆ L are classical Horn rules in
first order logic and each α, α ∈ A, is represented by
a serial-Horn formula.

Each serial-horn formula, that represents an action α
∈ A, needs to be in compliance with transition oracle
Ot. This is necessary because an action is responsible
for state change, and so, it will be in its composition
some predicates ins(_) and del(_). The state change
caused by an action is called action effects. Some
works on the formalization of actions using TR can
be founded in (Bonner and Kifer, 1995; Santos, et
al., 1996; Santos, 1996; Santos and Rillo, 1997).
Therefore, with the language structure L, some
definitions in TR framework can be established:

Definition 1: The database D in TR represents the
truth about world state in Closed-World Assumption
and where W and K ⊆ D.

As the database is in Closed-World Assumption, all
predicates that are not present in database are
supposed to be false.An example of a database D is
the set of predicates that indicates the state of each
thing in the car construction domain:

painting_machine(red).
car_setup(sedan).
Robot1_at(room1).
 ...

With the formal specification of an action instance
in TR, a plan, a case (stored plan) and a goal can be
defined in logical limits. The TR serial-conjunction
operator may the existence of sequence of actions,
which characterize a plan in planning.

Definition 2: (Plan) A plan δ = α1 ⊗ ⊗ αn is a
serial-Horn formula, where αi ∈ A; 1 ≤ i ≤ n.

A plan can change the world (database) as:
P,D0...Dn |= δ, where δ = α1 ⊗ α2 ⊗ α3 and P,D0...Di

|= α1; P,Di...Dj |= α2 and P,Dj...Dn |= α3. An
example of a plan to construct a blue-colored car
with 8cl engine is: ...⊗ weld(roof) ⊗
paint(car_structure, blue) ⊗ put(engine,8cl) ⊗ ...
Each action will change the state in order to make a
path of car state in each situation.

Definition 3: An empty plan δ0 is defined as a plan
without any action α,α ∈ A.

Definition 4: An instance pln can be a plan δ or an
empty plan δ0.

Definition 5: (Goal) A goal is a serial-Horn formula
and has the following structure:

Goal: pln ⊗ Df;

where Df is a queries set in TR that represents
desirable literal in the world after the plan
execution and pln is an instance that can be a plan δ
or an empty planδ0.

After the planner finds a desirable instance of pln,
the plan, after some changes, becomes a case to be
stored for future uses. For all, the plan is completed
by sets of literal, that characterize the initial and
final world of the plan. So, let be a case as plan
modification:

Definition 6: (Case) A case η is a serial-Horn rule
and has the following structure:

ηηηη ← Wi ⊗ α1 ⊗ ⊗ αn ⊗ Wf, ; where:
• ηηηη is a serial-Horn rule that represents the stored

case.
• αi ∈ A; 1 ≤ i ≤ n, a sequence of actions defined

by planner to satisfy a proposed goal.
• Wi is a set of queries in TR that represents the

literal at initial state and that it will be not true
after the execution of the sequence of actions

• Wf is a set of queries in TR that represents the
literal that doesn’t exist before the execution of
the sequence of actions and that it will be true at
the final state

An example of a case is: η ← robot1_at(room5) ⊗
.... ⊗ paint(car_structure,black) ⊗ put(engine,4cl) ⊗
... ⊗ painting_machine(black) ⊗ car_setup(hatch).
Where: Wi = robot1_at(room5); and
 Wf = painting_machine(black) ⊗ car_setup(hatch).

Therefore, the TR transaction base P can be defined:

Definition 7: A transaction base P in TR is a set of
serial-Horn rules that represents actions and stored
cases.

A planning problem is characterized by ψ = <D0, K,
A, G>, where D0 is the initial state, K is the causal
domain knowledge, A is actions set and G is the
goal.

Consider a planning problem ψ and a complete and
sound knowledge base, the soundness and the
completeness of a plan with relation to (w.r.t)
proposed planning problem ψ can be defined. In
(Hertzberg and Thiébaux, 1994), the intuition to say
that a plan is correct is to know if a plan says that
something is or can be true, then it really is or
should be. In fact, this is only guaranteed if the
planning problem ψ is sound and complete w.r.t
application domain. So that, can be defined the
correctness of a plan, w.r.t ψ, following the steps of
(Hertzberg and Thiébaux, 1994):
Definition 8: A plan Π is an directed graph
composed of nodes and branches, where:

1. All branches represent the invocation of actions
from A set.

2. The graph root is the state D0. All nodes
represent states of the database and they stay on
graph only once.

3. Each branch has only nodes as successor.
4. Excepting the root, all nodes have a branch as

predecessor
5. All leafs are nodes
6. From each node leaves, at least, one path that

achieve the leaf node.
7. Only leafs don’t have any branch that go to

others nodes.

But only with the definitions above is still possible to
create plans without any sense and that not achieve
the goal G. So, a plan δ can only be correct w.r.t ψ,
if it has the following conditions:

Definition 9: (Soundness and Completeness of a
plan) Consider a plan Π, and a planning problem ψ:

Soundness of roots: D0 ∈ Π is sound w.r.t ψ iff for
all α ∈ A of the D0, α is executable from D0, or
formally, P,D0 ... |= α.

Soundness of branches:Let α a branch of the Π
and let be Di its predecessor node, α is sound w.r.t
ψ iff for all α successor node Dj in Π, P,Di...Dj|=α.

Soundness of leafs: A leaf Dn is sound w.r.t ψ iff
P,Dn |= Df

Soundness of plans: Π is sound w. r.t. ψ iff:
1. D0 ∈ Π is sound w.r.t ψ;
2. All branches of Π are sound w.r.t ψ.
3. All leafs of Π are sound w.r.t ψ.

Completeness of roots: D0 ∈ Π is complete w.r.t ψ
iff for all α ∈ A, there is a branch that leaves D0,
such that P,D0 ... |= α.

Completeness of branches: Consider a branch of
the Π and let be Di its predecessor node, α is
complete w.r.t ψ iff for all successor node of α there
is a Dj node such that P,Di...Dj|=α.

Completeness of plans: Π is sound w.r.t. ψ iff:
1. D0 ∈ Π is complete w.r.t ψ;
2. All branches of Π are complete w.r.t ψ.

The plan completeness conception, also by
(Hertzberg and Thiébaux, 1994), is related to the
soundness. The idea is to say that if something can
happen by execution of a plan in accordance with ψ,
then the plan will respect it. This means that a plan
must allow that all possible worlds can be initial
situations, and that it must have all the actions
results which are directed to apply.

Due to the notion of soundness and completeness of
defined plan, the soundness and completeness of a
planner P can be defined, that it is nothing more
than a plan generator.

Definition 10 (Soundness of P) A planner P is sound
iff the plan Π generated by P(ψ) is sound and
complete w.r.t for all planning problem ψ.

Definition 11 (Completeness of P) A planner P is
complete iff for all planning problem ψ and for all
soundness and completeness plan Π w.r.t ψ, there is
P(ψ) = Π.

With the use of the TR in case-based planning, the
definition of a planner in theoretical framework and
its practical implementation is possible, through
proof theory of TR. The planner P, that is a case-
based planner, has the cases retriever phase,
adaptation phase and storing phase. Each phase is
added in order to find, for each pln instance, a sound
and complete plan.

4. RETRIEVER IN TR

In a case-based planning system, the retriever of
cases previously stored and similar to goal is one of
principal points of system’s efficiency. Depending
on the method used in the system, it can be faster or
slower, i.e., the time to find a plan that satisfy the
goal depends on the cases retriever time.

The case retriever has a property to restore features
of all states with the use of TR. Each case has in its
formula composition some features from initial state,
represented by Wi, and from goal responsible for its
case generation, Wf. With the TR semantic based on
states path is possible to obtain sub-cases, with an
analysis from executional path of the case.

However, a CBP system needs a method of cases
retriever that can find, besides similar cases, sub-
cases conjunctions that, when gathered, provide
more similarity then isolated. This kind of retriever
process has being made in some CBP systems, like
PRODIGY (Veloso, 1994), CAPER (Kettler,1995)
and MPA (Ram e Francis, 1994).

A CBP system formalized with TR needs to
contemplate all situations of possible cases and sub-
cases. Therefore, a method of two Cases-Sets (CS) is
proposed, where each CS is a set of TR formulas,
and where each formula represents a case or a sub-
case. The Cases-Sets are filled by similar cases
restricted by some kind of limits in pln instance. The
retriever uses CS to satisfy the constraints for each
pln instance founded in an incomplete plan.

There are two types of possible constraints, which
are before-constraint and after-constraint. The
before-constraint is a constraint before the pln
instance, and it can be:
 Initial state constraint: pln ⊗
Action Constraint: ... ⊗ αi ⊗ pln ⊗...

So, a CS1 will be responsible for the existing
restriction, and it will have in its composition
similar cases that should satisfy in some percentage
the constraint before the pln instance. For example,
a subset of Wi, called Wis, can be satisfied in D0,
P,D0 |=Wis; or there will be a case with the before
action, responsible by constraint, in its composition.

Restrictions after pln, called after-constraint, can be:
Final state constraint: ...⊗ pln ⊗ Df

Action Constraint: ... ⊗ pln ⊗ αi ⊗ ...

In addition, for this constraint, another CS, called
CS2, will be responsible to get cases that satisfy, in
some percentage, the after-constraint. For example,
cases that has a subset of Wf , called Wfs, where Wfs

⊆ Df, or cases that have in its composition the action
responsible for the existence of the after-constraint.
An example of the power of the action constraint,
suppose the following after-constraint: ... ⊗ pln ⊗
paint(car,blue) ⊗ ... So, the planner must find a
proper plan to substitute pln that needs change the
color of the painting_machine by blue, for example.

The pln instance will use two sets, one to satisfy the
before-constraint and another to satisfy after-
constraint. In order to turn a retriever phase an
efficient process, is necessary a crossing between the
both cases-set to find cases that have similar
intermediary states among them, and then, they can
be jointed to create a new case to satisfy the both
constraint type. The use of the TR may the crossing
between cases in both sets easier, because it has a
semantic structure based on paths of states.

If a case is presented in both Cases-Set, it can be
used directly, because it satisfies as the before-
constraint as after-constraint. When a case has not
total match, or total satisfaction, with the before-
constraint or after-constraint, a new pln instance is
included at that point. Each pln instance shows that
a case must be adapted or a new case must be
retrieved to satisfy it.
As retriever process adds pln instances in not-total
matching points, the retriever keeps the soundness
and completeness of the system, because its permits
the possibility to find the place that needs a plan
generation, by the adaptation process. The system
only keeps the soundness and completeness if the
chosen adaptation process keeps it too.

5. ADAPTATION IN TR

The adaptation of a CBP is responsible for the
soundness and completeness of the system, because
it guaranties the construction of a plan from scratch
if the retriever doesn’t find any similar case. The
majority of sound and complete CBP systems have
generative planners, that planning from scratch, in
its composition, as MRL (Koehler, 1996) and
PRODIGY (Veloso, 1994).

The adaptation needs to satisfy the existing
constraint and the final goal. For each existence pln
instance, the adaptation process must find a plan
that satisfies both constraints, before and after-
constrain. Therefore, the adaptation must be capable
of finding a plan to refit the case retrieved or find a
plan with from scratch planning, through a search
method, to achieve the proposed goal in ψ.

The used searching method with the TR
formalization is the state-space based, because the
TR semantic is based on path of states, and shows,
by deduction, all the states that plan went through to
achieve the goal.

With the adaptation process defined by a soundness
and completeness algorithm, the construction of a
sound and complete planner P(ψ) can be guaranteed.
In the plan creation process is necessary, for each
pln instance founded in goal, to decide if the
retriever is better than the adaptation. To define this
question is necessary a complete study of
computational costs of the retriever and the
adaptation for each pln instance, and so, decide for
the lower computational cost. It can be made by a
kind of heuristic process depending on the
application domain.

6. STORING THE CASES

In TR, the plan execution makes a path of states in
accordance with executional deduction of the TR
theory. This path is a plan, or in others words, it
shows the changing states behavior. Therefore, the
storing happens into the logical structure itself.

The storing is defined by the reconstruction of a plan
by the executional deduction of TR. For example,
consider a plan δ satisfied from initial state D0, and
consider Dn the final state after the plan execution,
the executional deduction provides a states path:
P, D0.... Dn |= δ ; where π = <D0,...,Dn> is the
execution path.

The construction of the case is possible with the
given sequence of states, defining the Wi and the Wf.

Due to the storing process, a plan become a new case
in memory, and it can be used in others goals latter.

7. CONCLUSION

The Transaction Logic, as described in this paper,
due to its semantic based on path of states, for
working with sequence of formulas and a theory that
makes possible the use of a database controlled by
oracles, it meets the needs of planning systems.

The Transaction Logic, for its inference rules, makes
possible the computational implementation of any
theory described in serial-Horn version of TR, and,
by the work of Santos (1997) , any conclusion
extracted from TR execution is also extracted from
PROLOG program resulted by application of
translation rules presented in (Santos, 1997). So
that, for being a logical theory that has a computable
version, the TR provides a better direct
implementation of formalized systems, avoiding the
semantic gap between theory and implementation
that exists in others logics used by some planning
system.

The description of plans, cases, goals and actions is
still clean and precise. This is possible because the
TR has a clean syntax as first-order logic. Others
logics, like temporal logic and modal logic, have
confuse syntax when used in a complex formula, that
makes difficult the definition of actions and plans
and its comprehension.

A CBP system that has a complete formalization in a
logical theory is the MRL system (Koehler, 1996),
that uses the LLP logic in a generative planner
called PHI and a descriptive logic to formalize the
case retriever. The MRL system presents some
problems. Firstly, it does not return cases and sub-
cases composition, and second the LLP logic has
syntax based on modal logic and so, its syntax is
confuse. Besides that, it has many inference rules,
what makes difficult its computational
implementation.

The system presented by this paper, by the use of
transaction logic as a formalization theory, improves
the extraction of sub-cases from cases, through the
analysis about executional path produced by the
case, allowing a composition of cases and sub-cases
by means of finding a better and possible solution for
a new planning problem. For all these features, the
TR becomes one of the power logics to formalize
planning systems, making possible a clean
representation of cases and plans, and a perfect
definition of a sound and complete CBP system, as a
retriever, as cases adaptation, as well as its capacity
to be implemented in a computational way.

ACKNOWLEDGMENTS

This work was supported by a grant from the
Brazilian Research Council - CNPq. Thanks to

Marcus V. Tolentino dos Santos for the discussions
on Transaction Logic in planning.

REFERENCES

Bonner, A. J. and M. Kifer (1995). Transaction
logic programming. Technical Report CSRI-323.
University of Toronto, Toronto.

Hammond, K. (1989) Case-Based Planning:
Viewing Planning as a Memory Task. Academic
Press Inc.

Hertzberg J. and S. Thiébaux (1994). Turning an
action formalism into a planner - a case study.
Journal of Logic and Computation, 4, 617-654.

Kettler, B. P. (1995). Case-Based Planning with a
High-Performance Parallel Memory. Ph.D.
Thesis, University of Maryland Park, Maryland.

Koehler, J. (1996). Planning from Second Principles.
Artificial Intelligence, 87.

Ram,A and A.G.J. Francis (1996) Multi-Plan
Retrieval and Adaptation in an Experience-Based
Agent. In, Case-Based Reasoning: Experiences,
Lessons and Future Directions (Leake,D.B. Ed.),
pp. 167-184, AAAI Press, Massachusets.

Rillo, M. (1994) A Robotized cell with high-level
autonomy. (Uma célula robotizada com alto grau
de autonomia). Technical Report University of
São Paulo, São Paulo.

Santos, M.V.T.; P.E. Santos; F.C.S. Silva and M.
Rillo (1996). Actions as prolog programs. In:
IEEE Proceedings of the Joint Symposia on
Intelligence and System, pp. 178-183
Washington.

Santos, M. V. T. (1996). On the formalization of
actions using transaction logic. In: Proceedings
of 12th ECAI - Worshop on Cross-fertilization in
planning, Budapeste.

Santos, M.V.T. and M. Rillo (1997). Approaching
the Plans are Program paradigm using
transaction logic. In: Proceedings of Forth
European Conference on Planning - ECP '97.
Toulouse.

Santos, P. E. (1997). Equivalence between
transaction logic semantic and its
implementation semantic in PROLOG
(Equivalência entre a semântica da lógica de
transações e a semântica de sua implementação
Prolog). Master’s Dissertation, University of São
Paulo, São Paulo.

Veloso, M. (1994). prodigy / analogy: Analogical
Reasoning in General Problem Solving. In:
Topics on Case-Based Reasoning, S.Wess,
K.D.Althoff and M. Richter Ed. pp. 33-50,
Springer Verlag.

