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Abstract

Research into techniques for the retrieval of images by semantic content is still in its infancy. This paper reviews recent
trends in the "eld, distinguishing four separate lines of activity: automatic scene analysis, model-based and statistical
approaches to object classi"cation, and adaptive learning from user feedback. It compares the strengths and weaknesses
of model-based and adaptive techniques, and argues that further advances in the "eld are likely to involve the increasing
use of techniques from the "eld of arti"cial intelligence. � 2001 Pattern Recognition Society. Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Content-based image retrieval (CBIR)* the retrieval
of images on the basis of features automatically derived
from the images themselves* is now a thriving "eld for
research and development, with reports of new tech-
niques appearing almost daily. As the "eld has matured,
the nature of the problems faced by researchers and
developers has inevitably changed. Much early research,
exempli"ed by projects such as TRADEMARK [1],
QBIC [2] and Photobook [3], was concerned primarily
with establishing the feasibility of retrieving images from
large collections using automatically-derived features.
More recent research (see [4}6] for recent comprehensive
reviews) has concentrated on identifying improved
techniques for CBIR, including new types of feature,
representation method and matching technique. Now the
feasibility of the underlying technology has been demon-
strated, e!ort can be devoted to the crucial question of
how to design and build systems that successfully meet
real user needs.

Most current CBIR techniques are geared towards
retrieval by some aspect of image appearance, depending
on the automatic extraction and comparison of image

features judged most likely to convey that appearance.
The features most often used include colour [7,8], texture
[9,10], shape [11,12], spatial layout [13], and multi-
resolution pixel intensity transformations such as
wavelets [14] or multi-scale Gaussian "ltering [15]. At
least three CBIR packages making use of such techniques
are now commercially available: QBIC from IBM
(http://www.qbic.almaden.ibm.com/), the VIR Image
Engine from Virage, Inc (http://www.virage.com/), and
VisualRetrievalWare from Excalibur, Inc (http://
www.excalib.com/).

While the technology behind current CBIR systems is
undoubtedly impressive, user take-up of such systems has
so far been minimal. This is not because the need for such
systems is lacking}there is ample evidence of user de-
mand for better image data management in "elds as
diverse as crime prevention, photo-journalism, fashion
design, trademark registration, and medical diagnosis
[16,17]. It is because there is a mismatch between the
capabilities of the technology and the needs of users. The
vast majority of users do not want to retrieve images
simply on the basis of similarity of appearance. They
need to be able to locate pictures of a particular type (or
individual instance) of object, phenomenon, or event
[18].

Gudivada and Raghavan [16] have drawn a useful
distinction between retrieval by primitive image feature
(such as colour, texture or shape) and semantic feature
(such as the type of object or event depicted by the
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image). Eakins [19] has taken this distinction further,
identifying three distinct levels of image query, each of
which can be further subdivided:

� Level 1, retrieval by primitive features such as colour,
texture, shape or the spatial location of image elements
(e.g. `"nd all pictures containing yellow or blue stars
arranged in a ringa).

� Level 2, retrieval by derived attribute or logical fea-
ture, involving some degree of inference about the
identity of the objects depicted in the image (e.g. `"nd
pictures of a passenger train crossing a bridgea).

� Level 3, retrieval by abstract attribute, involving com-
plex reasoning about the signi"cance of the objects or
scenes depicted (e.g. `"nd pictures illustrating pag-
eantrya).

Using this framework, the extent of the mismatch
between user requirements and the capabilities of the
technology becomes clear. Although the volume of re-
search into user needs is not large, the results of those
studies which have been conducted to date (e.g. [18])
suggest strongly that very few users need level 1 retrieval.
The majority of image queries received by picture libra-
ries are at level 2, though a signi"cant number (parti-
cularly in specialist art libraries) are at level 3. The
overwhelming majority of CBIR systems, both commer-
cial and experimental, o!er nothing but level 1 retrieval.
A few experimental systems now operate at level 2, but
none at all at level 3.

What are the prospects of bridging what has been
referred to as the semantic gap [16], and delivering the
image retrieval capabilities that users really want? This
paper aims to answer this question by reviewing current
research into semantic image retrieval, with particular
emphasis on the contribution which techniques from
related "elds such as arti"cial intelligence (AI) are mak-
ing to developments in this area. CBIR may have its
roots in the "eld of classical image analysis; it relies on
many standard image analysis techniques, such as convo-
lution, edge detection, pixel intensity histogramming, and
power spectrum analysis. But a successful solution to the
problems of semantic image retrieval (if one exists at all)
may well require a signi"cant paradigm shift, involving
techniques originally developed in other "elds. CBIR has
already bene"ted greatly from insights derived from re-
lated "elds. A prime example of this process is the tech-
nique of relevance feedback [20], originally developed
for text retrieval, where users indicate the relevance of
each item of output received, and the system amends its
search strategy accordingly. Relevance feedback is show-
ing considerable promise in the image retrieval area,
largely because users can rapidly judge the relevance of
a retrieved image within seconds. It has now been suc-
cessfully implemented in several experimental CBIR sys-
tems [21,22]. Other examples where CBIR has bene"ted

from insights from related "elds include relatively e$-
cient direct access via multidimensional indexing, from
the database management "eld [23], and retrieval by
subjective appearance, drawing on Gestalt psychology
[24].

AI, de"ned by Luger and Stubble"eld [25] as `the
study of the mechanisms underlying intelligent behaviour
though the construction and evaluation of artefacts that
enact those mechanismsa, appears a particularly promis-
ing source of ideas for advancing the art of semantic
image retrieval. It aims to develop techniques which
allow a machine to:

� reason from available knowledge, even when incom-
plete or con#icting;

� generate solutions using heuristics where no algorith-
mic answer is feasible;

� interact with the environment and learn from past
experience;

� use higher-level knowledge in problem-solving, and
handle semantic issues;

� generate output matching that of a human expert;

in other words, to exhibit intelligent behaviour, de"ned
by Newell and Simon [26] as `behaviour appropriate to
the ends of the system and adaptive to the demands of the
environmenta. Most observers would agree that assessing
the contents of a set of images in order to decide their
relevance to a query was indeed a task requiring intelli-
gence in this sense. In the context of image retrieval, the
end of the system is the identi"cation of a set of images
from a collection which meets a user's perhaps subjective
and poorly-formulated need, and adaptive to the demands
of the environment implies that the system should o!er
#exibility in allowing di!erent modes of user interaction,
and learn from user feedback.

2. The need for intelligent image retrieval

One crucial di!erence between primitive and seman-
tic-level retrieval seems to lie in the extent of intelligent
behaviour needed to decide whether a given image meets
the speci"ed search criteria. At the primitive level, images
can normally be matched by algorithmic means purely
on the basis of information contained within the images
themselves. For example, colour similarity matching re-
quires nothing more than the computation and compari-
son of two histograms representing the distribution of
pixel colours across the two images. There is no require-
ment for what might be considered intelligent behav-
iour}reference to an external knowledge base, reasoning
with con#icting or incomplete data, or learning from past
experience.

Semantic retrieval requires the identi"cation of images
depicting desired types of object, scene, event, or abstract
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idea. According to the de"nition above, this is a process
requiring intelligence, as it requires reasoning about the
nature and signi"cance of primitive visual cues from the
image, and their relationships to each other and to the
viewer's past experience. This latter aspect appears to be
of crucial importance. Even at the simplest level (such as
recognizing a curved yellow region in an image as a ba-
nana), extraction of an image's semantic content seems to
require reference to some external store of knowledge. To
identify a banana in an image requires experience of the
range of colour, shape and texture combinations which
have characterized previously-encountered examples,
and the ability to use this knowledge to predict which
yellow curved regions are in fact bananas, and which
(say) parts of yellow rubber rings.

Identifying even a relatively simple artefact such as
a chair is a rather more complex process. Since chairs
come in a wide variety of colours, textures and shapes,
primitive image features are unlikely to su$ce on their
own. The problem of recognizing a chair is not percep-
tually more di$cult than that of recognizing a banana.
The di!erence lies in the degree of interpretation neces-
sary. Recognition of an object as a chair requires refer-
ence to some higher-level model, de"ning spatial,
structural and perhaps other constraints. Such a model
needs to be susceptible to modi"cation, to include the
possibility that new designs of chair may appear in the
future (not a problem one would expect to encounter
with bananas!). Humans build up and re"ne such
a model automatically from past experience: for machin-
es, the process is less straightforward. The need to gain
such experience directly is one reason why Brooks [27]
has advocated designing robots in humanoid form.

Identifying complex human artefacts is still more prob-
lematic. Experienced engineers can readily recognize
a pressure-limiting valve in an engineering drawing, even
though its actual shape may vary considerably * pre-
sumably because their training enables them to draw
reasonable inferences from the appearance and layout of
key components, as well as the nature of any larger
structures in which they appear. But even a highly intelli-
gent human would "nd such a task impossible without
the requisite engineering training. The need to update
one's mental model of a specialist device of this kind is
likely to be even greater than for an everyday object such
as a chair, since new designs are likely to appear at
frequent intervals.

Yet another layer of complexity is encountered when
trying to interpret scenes depicting speci"c types of event.
To recognize a photograph as that of a child's birthday
party demands not only the identi"cation of objects
which might be present in such scenes (young human
"gures, balloons, lighted candles), but a further level of
reasoning about the relationship of these objects to each
other and the extent to which these conform to prior
expectations of what occurs at such events. Again, the

ability to update such mental models in the light of
changing circumstances is crucial.

The issues surrounding human recognition and classi-
"cation of images have been extensively studied by Rosch
et al. [28]. The most signi"cant "ndings from these stud-
ies in the present context are as follows:

� Humans naturally categorize objects they encounter
into basic categories such as chair or banana. Although
visual appearance is of major importance in identify-
ing these classes, other factors such as commonality of
the motor movements needed to interact with such
items (such as grasping with the "ngers) also play
a part in such characterization.

� The basic category appears to be a favoured level of
abstraction for many purposes. Participants in experi-
ments in free-naming of pictures, for example, over-
whelmingly preferred to use basic category names
rather than more specialized or generalized levels
(hammer rather than tool or claw-hammer, for
example). Developmental studies with young children
show that basic category names are learnt earlier in life
than those of other levels.

� Basic categories generally have a higher proportion of
attributes common to all member of that class than
subordinate or superordinate categories. In many (but
not all) cases it is possible to construct an &averaged'
shape from typical members of the class which humans
can readily recognize.

These "ndings give some indication of the likely suc-
cess of semantic image retrieval techniques which rely on
automatic derivation of object or scene labels from visual
features of the image. Such techniques are most likely to
succeed for objects within an image which correspond to
basic classes (such as banana or horse) whose members
share a strong visual similarity. For such objects it
should be possible to construct or learn suitable object
models permitting recognition of typical examples of
each class. For other types of object (such as bird or tree),
a similar approach based on visual similarity of sub-
classes (probably, though not necessarily, based on exist-
ing taxonomic divisions such as sparrow, parrot or eagle)
may prove more e!ective. For object classes where many
de"ning attributes are non-visual (such as chair or pump),
however, this approach appears doomed to failure
* though the fact that humans can recognize such ob-
jects from visual cues alone suggests that the problem is
in principle soluble.

To develop a complete understanding of image con-
tents at the semantic level is a formidable task, well
beyond the capabilities of any current machine. Fortu-
nately, such a complete level of understanding is not an
essential prerequisite for successful semantic image re-
trieval, as several researchers in the "eld have pointed out
[29,30]. Empirically, a retrieval system can be regarded
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as successful if it has the ability to classify a su$ciently
high proportion of objects sought by users accurately
enough for its retrieval output to satisfy a searcher's
needs. In many contexts (including photo-journalism),
this means that quite low classi"cation accuracy may be
acceptable, provided the searcher can in fact "nd a usable
picture. An analogous situation holds in text retrieval,
where e!ective retrieval systems have been around for
years, despite continuing di$culties with automatic text
understanding. Unfortunately it is not yet clear what
level of image understanding is in fact required for suc-
cessful classi"cation and retrieval. The only way to re-
solve this question appears to lie in the development and
evaluation of semantic image retrieval techniques.

3. Current trends in semantic image retrieval

Research into semantic image retrieval per se has
a relatively short history; the vast majority of papers
reviewed in this article date from 1996 or later. Many of
the techniques now being applied to the problem have
been adapted from related areas such as &classical' object
recognition or machine learning, and it is not always easy
to distinguish between research into image understand-
ing for its own sake and research motivated by a desire to
develop better storage and retrieval systems. As yet, it is
di$cult to discern any body of techniques or hypotheses
which belong solely to the "eld of semantic image re-
trieval. This is possibly an indication of the relative
immaturity of the "eld. However, semantic image re-
trieval is a topic of growing research interest* at least at
level 2 as de"ned above (retrieval by derived attribute
such as the type of object or scene depicted). Several
di!erent areas of activity can be distinguished within the
"eld, though many of the techniques used are common to
more than one area, and the distinctions between di!er-
ent approaches are not always clear-cut:

� Automatic scene classi"cation in whole images, typi-
cally using statistically-based techniques.

� Automatic object classi"cation, using one of the fol-
lowing alternative approaches:

� � knowledge-based techniques based on detailed ob-
ject models;

� � statistical techniques similar to those used for
scene classi"cation.

� Methods for learning and propagating labels assigned
by human users.

Examples of each of these approaches are discussed in
detail below.

By contrast, no signi"cant research has yet been
reported into CBIR at level 3 (retrieval by abstract

attribute such as freedom). The issues involved are daunt-
ingly complex. Little is known about the way in which
humans interact with images at this level, making it
almost impossible even to identify potentially fruitful
lines of investigation.

4. Automatic scene classi5cation

Automatic classi"cation of scenes (into general types
such as indoors, city street or beach) can be useful, both
because this is an important "lter which can be used
when searching, and because this can help in identifying
speci"c objects present. One of the earliest systems of this
type was IRIS [31], which used a reasoning approach
based on a combination of colour, texture, region and
spatial information to derive the most likely interpreta-
tion of the scene, generating text descriptors such as
mountain, forest or lake for input to a text retrieval sys-
tem. Later researchers have identi"ed much simpler tech-
niques for scene analysis. For example, Oliva et al. [32]
have used shape characteristics of whole-image power
spectra sampled with Gabor "lters to classify scenes by
placing them on appropriate points on two semantic
axes: arti"cial vs natural, and open vs closed. Szummer
and Picard [33] use a combination of colour histograms,
texture measures and discrete cosine transform (DCT)
coe$cients to train a nearest-neighbour classi"er to dis-
tinguish between indoor and outdoor scenes. Empirical
tests showed the method to have 90% accuracy in clas-
sifying a set of 1300 colour photographs. Lipson et al.
[34] propose a di!erent approach, based on qualitative
reasoning from templates specifying expected combina-
tions of colour layout for prototype scenes such as moun-
tain or xeld. They report 75% accuracy in classifying
photographs of mountains, with 12% false positives.
Vailaya et al. [35] have developed a Bayesian classi"er to
group images into a number of semantically meaningful
categories, including city vs landscape and forest vs
mountain, using codebook vectors generated by vector
quantization from feature vectors based on colour mo-
ments and Gabor coe$cients. Reported accuracy is bet-
ter than 90% for most classi"cation tasks.

The di$culty of judging the accuracy of systems of this
kind is illustrated by Paek et al. [36], who developed
a prototype system for classi"cation of news photo-
graphs into indoor and outdoor scenes based both on
keywords in caption text and histograms of colour edge
direction distributions. Their system achieved 86% clas-
si"cation accuracy*but easily outperformed Szummer
and Picard's method [33], which achieved only 74%
accuracy with this test data set. Another potential prob-
lem is the choice of category to which images are as-
signed. This often appears to have been subjectively
chosen by the experimenters themselves, signi"cantly
limiting the validity of their results. One exception to this
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is the hierarchical classi"er developed by Vailaya et al.
[35] for vacation images, which used automatic cluster-
ing techniques based on subjective classi"cation deci-
sions made by an independent user panel to generate an
objectively-de"ned set of categories and classi"cation
results to serve as ground truth.

Systems of this kind provide a degree of classi"cation
for semantic image retrieval; Permitting automatic as-
signment of keywords such as beach, mountain or city
scene to appropriate images. At least at present, they tend
to represent a fairly basic approach to semantic retrieval,
in some cases just classifying images as X or not-X, where
X might be beach or city scene. Inevitably, this raises
questions over scalability. Most of the really high success
rates have been reported with X/not-X classi"ers. The
extent to which such systems can be said to exhibit
intelligent behaviour as de"ned in Section 1 is debatable.
They make little use of high-level knowledge, and have
little ability to reason from incomplete or con#icting
information. In particular, few have any ability to con-
tinue learning when in operational use * an exception
being the incremental learning system described by
Vailaya and Jain [37]. This solves the problem of assign-
ing appropriate weights to new and old training data by
recreating an approximation to the original training set
from the codebook vectors generated by vector quantiz-
ation, and then repeating the classi"cation process with
the enlarged training set.

5. Automatic object recognition

Automatic object recognition is clearly important for
semantic image retrieval. The ability to identify a given
type of object in a scene is useful both as an end in itself,
and as an intermediate step in the interpretation of more
complex scenes. Vailaya and Jain [38], for example, have
proposed a scheme for semantic indexing of an image
which combines scene identi"cation using global features
and object detection using local features. The two main
approaches used to date for automatic object recognition
can be described respectively as knowledge-based and
statistical, though the distinction is not entirely clear-cut.

5.1. Knowledge based object recognition

One of the most e!ective methods for object recogni-
tion in an image can be to specify a model for each type of
object of interest, and then examine the image for regions
conforming to that model. In this way, the past experi-
ence needed to understand the image is embedded into
the object models used by the software developed to
process the image. One of the earliest implementations of
these principles was Brooks' ACRONYM system [39],
which used generalized shape modelling to identify and

locate instances of desired objects in aerial photographs.
After an initial edge detection step, descriptions of pos-
sible objects of interest were derived in the form of
generalized cones, shapes generated by sweeping a given
cross-section along a de"ned trajectory. A set of produc-
tion rules was then used to infer the presence of speci"ed
types of aircraft from the pattern of cones derived from
the image. Similar strategies were used in Matsuyama
and Hwang's SIGMA aerial image interpretation system
[40], which used a frame-based approach in a so-called
interpretation cycle of progressive object recognition, and
Draper's SCHEMA [41], which used a blackboard
architecture to combine low-level image tokens into
plausible object interpretations.

Systems such as ACRONYM were not developed with
any speci"c application in mind* their designers' main
aim was to demonstrate the feasibility of knowledge-
based techniques for scene interpretation. Later re-
searchers have adapted these techniques for use in the
speci"c context of CBIR. One of the best-established
systems of this type is PICTION [42], which identi"es
human faces in natural scenes by matching candidate
face shapes generated by multi-resolution edge detection
techniques with a simple three-contour model of hairline
and left and right face contours. A more sophisticated
technique of this kind is based on the extraction of
so-called Composite Visual Objects [43]. E!ectively, this
technique is an expert system for recognizing and charac-
terising visual objects made up of simple connected re-
gions. Each composite object has to be de"ned as
a model consisting of one or more components. Images of
(clothed) humans, for example, can be modelled as a spe-
ci"c arrangement of primitives such as face, hair, jacket,
or hat. Their human detector separates out image regions
using conventional means, and then attempts to reason
about their likely identity by comparing them with the
model.

Perhaps the most highly-developed technique in this
area is that of Forsyth et al. [29]. Their approach is based
on developing a model of each class of object to be
recognized, and using this to build up evidence for or
against the object's presence in the image. Evidence could
include features of the candidate region itself (colour,
shape or texture), or contextual information such as its
position and the type of background in the image. Object
classi"cation is a three-stage process: (a) segmenting im-
ages into coherent regions using a combination of edge,
colour and texture information; (b) fusing colour, texture
and shape information to identify possible descriptions of
each region (for example, as a human arm); and (c)
classifying objects from their constituents in terms of
component descriptions. The method has been applied
with some success to the identi"cation of a range of
object types, including unclothed human bodies, horses
and trees, though the retrieval e!ectiveness of the system
is fairly modest at present (a typical score in experiments
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�Precision is de"ned as the percentage of retrieved objects
relevant to the query; recall as the percentage of objects in the
entire database relevant to the query.

with the horse classi"er was 15% recall at 66% pre-
cision�).

Model-based systems of this kind are perhaps more
obviously &intelligent' than the scene classi"ers described
in Section 4 above. They certainly make greater use of AI
techniques of the type listed in Section 1. Their underly-
ing object models are often implemented as large and
carefully-structured knowledge. They are clearly capable
of reasoning about the nature of the objects in an image,
using base data that may often be sparse or inconsistent.
Reasoning often uses heuristic methods, guided by high-
er-level knowledge } the models themselves. The prob-
lems they face * shared by many expert systems * are
"rstly that their knowledge is often very domain-speci"c,
and that they can therefore handle only a very restricted
set of object types, and secondly that their knowledge is
embedded by their designers. Hence they have no mecha-
nism for improving their performance by learning. As
with the scene classi"ers, it is not clear how well they can
scale up from situations where image objects are classi-
"ed as X or not-X, to a real-life situation where there may
be hundreds, if not thousands, of di!erent types of objects
to distinguish. And rich though their underlying models
may be, little success has yet been achieved in incorporat-
ing the kinds of non-visual knowledge which are clearly
needed to recognize examples of some types of object
[28].

5.2. Statistical techniques for object recognition

A conceptually simpler approach to image interpreta-
tion, which does not require the construction of any
high-level object model, is the use of statistical techniques
(often very similar to those used in scene classi"cation) to
assign appropriate semantic labels to individual regions
within an image. A good example of this approach is
provided by Campbell et al. [44], who use a combination
of colour and texture features to train an radical basis
function (RBF) network to distinguish between 11 di!er-
ent types of region in a scene, including sky, vegetation,
road, building, fence and &mobile object' * typically
a car. They report over 80% accuracy in classifying over
3700 regions from 350 images. Vailaya and Jain [38]
have adapted their whole-image classi"cation technique
[35], based largely on local colour and texture measures,
to the recognition of sky and vegetation in outdoor
images, with encouraging preliminary results. They plan
to extend the technique to classify a larger range of
region types.

Similar work is reported from a number of other labor-
atories. Martinez and Serra [45] have used discriminant

analysis based on feature vectors derived by principal
component analysis (PCA) from images convolved with
Gaussian derivatives to classify images into a variety of
categories, including animals, humans, cars and houses.
Little information is provided on the e!ectiveness of their
approach. Belongie et al. [46] have developed a so-called
blobworld representation of image regions, based on seg-
mentation by colour and texture features using the expec-
tation-maximization algorithm. Although they do not
claim that their technique o!ers semantic retrieval, they
show that it can be used to retrieve images of objects such
as tigers and aircraft from a database. Leung and Malik
[47] have developed a method for identifying material
within textured regions of an image (as leather, cork,
plaster, etc) using microstructures known as 3-D textons
derived from primitive texture measures. At a more
specialist level, Bregler and Malik [48] have used some
novel texture measures to train a hierarchical mixture of
experts (HME) classi"er capable of distinguishing be-
tween "ve di!erent types of vehicle from surveillance
videos. And Schneiderman and Kanade [49] have shown
that a Bayesian classi"er based on vectors derived by
PCA from pixel intensities in image subregions sampled
at three levels of resolution can correctly detect over 90%
of human faces in an image collection with a false positive
rate of less than 25%, outperforming earlier face classi-
"ers based on back-propagation networks [50].

An idea of potentially wide applicability is the use of
statistically-generated visual classes for object recogni-
tion, proposed by Schiele and Crowley [51]. This aims to
get round the problem of variability in appearance of
objects such as chairs by identifying a number of speci"c
visual classes of chair, each of which is su$ciently homo-
geneous to be identi"ed purely by visual appearance.
These could be detected using the authors' earlier tech-
nique of object recognition using multidimensional re-
ceptive "eld histograms [52]. Unfortunately the authors
provide no convincing evidence that their concepts
model reality su$ciently well to be of any practical use
for generic object recognition. It is not clear how (if at all)
visually homogeneous subclasses of objects such as
chairs can be identi"ed; nor is it clear that multidimen-
sional receptive "eld histograms are useful for identifying
di!erent instances of a given class of visually similar
objects, as opposed to the same object at di!erent 3-D
orientations. A rather more well-developed technique for
recognising objects (such as oranges) or types of material
(such as sand) in an image is the method of Buijs and Lew
[30] for inducing &simple semantics' from primitive image
features. They do this by identifying both positive and
negative example images, identifying a subset of primitive
features with high discriminating power, and using these
to train a minimum distance classi"er.

Statistical approaches have the advantage of not re-
quiring the construction of complex and possibly do-
main-speci"c models of each type of object to be
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recognized, though they obviously su!er from the lack of
any high-level knowledge about the domain, relying to-
tally on statistical associations between image semantics
and quanti"able low-level properties, learnt in most cases
from a training set of a few hundred examples at best.
When judged by the criteria of Section 1, these tech-
niques may appear less &intelligent' than the model-based
approaches described above, because of the lack of high-
level reasoning capabilities* or even, in many cases, the
ability to cope with missing or uncertain information.
This does not necessarily make them less useful.

6. User-assisted retrieval techniques

The problems of achieving e!ective semantic image
retrieval by purely automatic means have led many re-
searchers to investigate methods which retain some de-
gree of human intervention during the actual operation
of the system, either at input or search time. Many of the
techniques described here are very similar to the statist-
ical object or region classi"ers described in Section 5.2.
However, there is one crucial di!erence: the techniques
described here are capable of continuous learning
through run-time interaction with end-users, while those
described in Section 5.2 learn only during their initial
construction.

Semantic retrieval techniques depending on user inter-
action cover a broad spectrum of intelligence. A relative-
ly low-level (though again potentially very useful)
technique for bridging the semantic gap is content-based
navigation, the use of generic links speci"ed in terms of
text or image features. This can be used to construct
a multimedia thesaurus [53] specifying semantic relation-
ships between source items in the link database, whether
text, image or sound. This allows system users to build up
a database of semantic relationships between text
terms and their corresponding images. However, human
intelligence is still required to establish linkages between
image types and their semantic meanings. The system
itself acts purely as a repository for this knowledge; it
provides no mechanism for automated reasoning or
learning.

More obviously &intelligent' is a family of techniques
based on extensions of the relevance feedback principle.
One of the earliest systems to provide this kind of interac-
tion was FourEyes [54], which allowed a user to group
arbitrary regions of images (such as particular types of
building, or species of plant), and optionally give these
regions semantic labels such as grass or sky. Once the
user has assigned labels to several examples of the same
type from one or more images, the system attempts to
induce grouping rules from the positive and negative
examples at its disposal. A number of learning techniques
were compared for this purpose, with set coverage [55]
proving the most successful with the training examples

used. FourEyes then uses these rules to assign labels to
new examples sharing the same range of feature values.
Feedback from the user can be used to re"ne the selection
rules. E!ectively, then the system can learn what areas of
grass and sky look like, and can then search for images
containing such areas. Another method for propagating
human annotation of image objects is described by
Frederix and Pauwels [56]. This segments images into
regions of interest using unsupervised clustering tech-
niques, extracts suitable shape features from region
boundaries, and searches the database to identify anno-
tated examples of similar shapes. Appropriate annota-
tions can then be propagated to the new image. As yet
few technical details appear to be available.

The Semantic Visual Template approach proposed by
Chang et al. [57] is based on similar principles, though
here labelling is attached to queries rather than image
regions. Users are requested to identify a set of possible
low-level feature combinations which might meet their
semantic query. A sunset, for example, would contain
large areas of colours such as orange or purple, and
possibly a bright circular object. The system then identi"-
es regions of primitive feature space enclosing all the
examples given, and generates an initial set of query
icons. This query set can be re"ned using relevance feed-
back techniques, and stored in a query database for later
use and possible modi"cation. Similar considerations
have motivated the development of Wood et al.'s Image
Database Query System [58]. This uses a two-stage
training procedure to derive a semantic classi"er capable
of identifying objects such as sailboats, mountains and
faces. In the interactive phase, a searcher uses relevance
feedback to train an learning vector quantization (LVQ)
algorithm to recognize positive and negative examples of
the desired concept. This interaction can be stored for
re-use and possible modi"cation. This is followed by an
o!-line phase in which output vectors from the LVQ step
are used to train an RBF classi"er which can then be
used to search for regions corresponding to the desired
object class.

A novel framework for capturing semantic information
about an image collection through relevance feedback is
reported by Lee et al. [59]. This incorporates a second
feedback loop so that users' input is remembered perma-
nently, and used to store semantic links between images
as well as similarity of appearance. Initially, images are
clustered purely on the basis of primitive feature sim-
ilarity. Users who search the system are asked to indicate
which retrieved images are relevant and which irrelevant.
This information is then used to split and merge clusters
of similar images, gradually introducing an element of
semantic similarity in the process. The authors refer to
this as &warping feature space'. Evaluation results on
a collection of 1000 images pre-clustered into 50 groups
suggest that repeated use of the system does indeed yield
a steady increase in search precision.
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Jaimes and Chang's Visual Apprentice [60] aims to
provide users with a general framework for building up
visual classes which can represent speci"ed types of ob-
ject or scene. Users can de"ne a visual class by specifying
labels for objects and their key constituent parts, together
with a set of training examples in which image regions are
labelled according to the class de"nition. The system
then uses a combination of lazy learning, decision trees
and genetic algorithms to build up a hierarchical object
de"nition in which image regions generated by primi-
tive-level segmentation routines are grouped progress-
ively into perceptual areas (groups of regions likely to be
perceived as a whole), object parts, whole objects and
scenes. The system is still at a relatively early stage of
development, though is already capable of quite impres-
sive results, retrieving images containing visually distinc-
tive objects such as ships and elephants from small image
collections with over 90% recall and 70% precision. The
authors are quick to point out that their approach is not
suitable for objects whose visual appearance is more
variable.

These techniques exhibit at least one aspect of intelli-
gent behaviour as described in Section 1, in that they
share the ability to build up a knowledge base of past
experience through user interaction. The nature and lo-
cation of this knowledge base di!ers between systems. In
FourEyes, for example, linkages between primitive and
semantic features are regarded as a property of the image
region (type, not instance); in the Semantic Visual Tem-
plates method, such information is a property of the
query (instance, not type). All such techniques possess the
ability to reason with incomplete information, since they
inevitably begin with an empty knowledge base. They
cannot however bene"t from the kind of higher-level
knowledge built into the model-based systems described
above. Hence their reasoning is inevitably ad hoc, and the
quality of their knowledge base depends crucially on the
quality of their past interaction with users.

7. Comparison of techniques

Even though one can argue that there is a linkage
between the degree of &intelligence' exhibited by the tech-
niques described above and their retrieval e!ectiveness,
the latter is clearly more important than the former.
Unfortunately this is not easy to establish. Researchers in
this area are now beginning to publish their evaluation
results, normally in the form of precision/recall "gures,
but it is seldom possible to draw valid comparisons
between systems. Di!erent sets of researchers have tested
out their systems on di!erent collections of images, using
di!erent measures of e!ectiveness, di!erent sources of
query images, and di!erent ways of judging the correct-
ness of system output. Since in the last analysis, image
retrieval systems have to model subjective human judge-

ments, reliable ground truth is hard to come by. There
are few widely-available collections of images available
for comparative studies, let alone sets of standard queries
and relevance judgements to provide essential ground
truth for comparative studies. And there is still remark-
ably little awareness of the need to obtain independent
relevance judgements for evaluating system e!ectiveness.
Judgements made by members of the development team
are inherently #awed, as shown clearly by the experi-
ments of Squire and Pun [61] comparing human and
machine performance in partitioning images into similar
groups.

Two main current approaches to semantic retrieval
can be distinguished, though each has been applied in
a variety of ways* model-based scene and object recog-
nition, and statistical techniques for semantic labelling of
whole images or regions via human interaction. The
latter class of approaches can be divided further, into
those where system training is carried out at the design
stage (e.g. [51]), and those where user interaction is an
integral part of the learning process (e.g. [54]). Each of
these approaches has its strengths and weaknesses. It was
argued in Section 2 that some store of prior experience
was essential for interpreting image data at the semantic
level. Both types of approach have mechanisms for con-
structing a set of semantic interpretation mechanisms for
primitive-level data which could constitute such a store.
The key di!erence is that model-based techniques tend to
have a richer*but less #exible}set of interpretation
mechanisms than the statistical methods. So is one ap-
proach superior to the other? At present, too little is
known about the knowledge structuring and reasoning
processes involved in image interpretation to draw any
"rm conclusions. In the short term, the potential depth
and richness of high-level object models of the type
developed by Forsyth et al. [29] appear more likely to be
able to provide a successful basis for high-level image
interpretation than the often ad hoc associations on
which statistical methods depend. A further problem
with both types of statistical technique is that they as-
sume that, given enough instances, the mapping between
primitive image features and previous human semantic
judgements can always be learnt. Learnability theory
[62] suggests that this kind of assumption is not always
valid. While some classes of concept can provably be
learnt to a given degree of accuracy in a "nite time by the
repeated presentation of examples, the extent of the set of
learnable classes is not at present known. In the longer
term, however, one suspects that the problems of updat-
ing and extending complex model-based approaches
such as Forsyth's to cover more than a toy subset of
object classes will prove insuperable unless they too
make use of some form of adaptive learning. It is notable
that Brooks, the developer of the "rst model-based scene
interpreter ACRONYM, now favours a very di!erent
architecture for intelligent systems, based on cooperation
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between large numbers of simple autonomous agents
[27].

8. Future prospects for intelligent image retrieval

Current research into semantic-level image retrieval is
clearly at a very early stage, and it will be a long time
before any generally useful systems emerge. As indicated
above, both currently-favoured approaches have their
strengths and weaknesses. Model-based approaches to
object classi"cation can be powerful, but are often very
limited in scope and lack the ability to learn from experi-
ence. They need to develop automatic mechanisms for
adapting the structure and content of their models as
they encounter new examples and counter-examples of
the objects they have been designed to classify. And one
suspects that they will need more powerful knowledge-
structuring methods to cope with any realistic domain of
object types. Statistical approaches have the enormous
potential advantage of being able to learn from experi-
ence * provided the learning process does not cease at
the design stage, but continues to incorporate new know-
ledge gained from user feedback. However, current tech-
niques for incorporating such feedback make little or no
attempt to structure their knowledge bases, which limits
their ability to reason with higher-level knowledge. They
are crucially dependent on the value of the input they
receive from users. Since they lack any mechanism to
control the quality of user input, they inevitably incor-
porate feedback from all users* even if idiosyncratic or
malicious * in the same fashion. This suggests that the
e!ectiveness of such systems could be markedly im-
proved by better initial structuring of their knowledge
bases, and the use of more appropriate learning para-
digms, as outlined by Brooks et al. [27].

It is far from certain that any current approach will
lead to e!ective semantic image retrieval. Santini and
Jain, for example, have argued that true semantic re-
trieval is unachievable, as users' views on which images
are relevant to a particular query are so variable that no
generalization is possible [63]. They therefore propose
an enhanced form of relevance feedback, in which users
can visualise search results in several dimensions, explor-
ing the relationships between underlying primitive fea-
tures and their current information needs. From this
perspective, it can actually be detrimental to equip a sys-
tem with complex semantic models or the ability to learn
permanent associations between semantic concepts and
primitive features, as this simply interferes with users'
freedom to manipulate search space. Only time will tell if
this proves to be a realistic view.

In the opinion of this reviewer, such a view is unduly
pessimistic. The advances made over the past three years
provide grounds for at least cautious optimism about
future prospects for semantic image retrieval. It has to be

conceded, though, that the problems remain formidable,
and the nature of the underlying mechanisms needed to
support semantic image retrieval remain the subject of
speculation. Analysis of the work reviewed above sug-
gests the following conjectures about these mechanisms.
Although none is readily quanti"able, or susceptible to
mathematical proof, they should all be empirically test-
able in the same sense as Newell and Simon's physical
symbol system hypothesis [26]* they can be con"rmed
or refuted by the development of future systems.

� Image retrieval at the semantic level can be achieved
only by reference to some knowledge base of prior
experience. Evidence for this hypothesis comes from
consideration of the systems reviewed above. In every
case, it is possible to identify either a repository of past
knowledge about the domain in which they operate, or
a mechanism for building up such a store. Such a fea-
ture is seldom, if ever, seen in primitive-level systems.

� The higher the level of interpretation required to an-
swer a semantic query, the larger and more complex
the knowledge base and reasoning mechanisms needed
to perform this interpretation. Consideration of the
examples discussed in Section 2 above suggests that
there are clear di!erences between the extent of rea-
soning needed to identify an image of (say) a chair, and
a child's birthday party. One can therefore postulate
that the reasoning capabilities required for the former
task would be a subset of those needed to accomplish
the latter.

� Successful semantic retrieval involving images of com-
plex objects or scenes requires an adaptive system
capable of learning from experience. Models of almost
any type of object need to be built up and re"ned over
a period of time in the light of experience. To expect
system designers to get every detail of their models
right "rst time is unreasonable. Even if they were to do
so, another problem would remain. The visual proper-
ties of almost any human artefact are likely to change
* perhaps quite frequently * over time. It is simply
not feasible for system designers to modify an object
model every time a visually di!erent example of that
object is encountered. The system itself has to be able
to adapt.

If the conjectures outlined above do turn out to re#ect
the processes underlying semantic image retrieval, one
can expect a signi"cant proportion of further advances in
this "eld come from the domain of AI. As indicated
above, a number of speci"c AI techniques have already
been applied to image retrieval at the semantic level,
including rule-based reasoning, neural networks, and
genetic algorithms. However, these have often been ap-
plied to peripheral aspects of the problem in hand, and
there appears to be considerable scope for the more
systematic application of AI techniques and concepts.
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Adaptive learning is perhaps the prime example here.
The potential of techniques such as case-based reasoning
[64], explanation-based learning [65], reasoning by
analogy [66] and conceptual clustering [67] to provide
systematic learning capabilities for image retrieval sys-
tems remains largely untapped. The opportunities for
developing truly intelligent image retrieval systems by
combining techniques from the "elds of image processing
and arti"cial intelligence are considerable.
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