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Abstract. This paper presents a Multi-Robot Task Allocation (MRTA)
system, implemented on a RoboCup Small Size League team, where
robots participate of auctions for the available roles, such as attacker
or defender, and use Heuristically Accelerated Reinforcement Learning
to evaluate their aptitude to perform these roles, given the situation of
the team, in real-time.
The performance of the task allocation mechanism is evaluated and com-
pared in different implementation variants, and results show that the
proposed MRTA system significantly increases the team performance,
when compared to pre-programmed team behavior algorithms.

Keywords: Multi-Robot Task Allocation, Reinforcement Learning, RoboCup
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1 Introduction

Effective cooperation in teams of autonomous robots, operating in highly dy-
namic environments, poses a significant challenge. The robotic team members
have to adapt or change their assigned tasks in real-time, in response to new
and possibly unforeseen situations, while ensuring the team’s long-term goals
progression. Under these circumstances, efficient dynamic task allocation sys-
tems are desirable even in small and homogeneous teams, if only to minimize
physical interference. However, on larger, often heterogeneous teams, it becomes
essential.

Designing these allocation systems, often referred to as Multi-Robot Task
Allocation (MRTA) systems, involves dealing with a straight-forward question,
but of difficult answer ([8]): “which robot should execute which task?”. To an-
swer this question, robots need to perceive their environment, evaluate their
aptitudes and communicate with their teammates, to avoid interferences, effort
duplication, and deficient task resolution. Such challenges motivated researchers
to develop a number of solutions to solve robotic task allocation problems. In-
depth surveys of the MRTA field can be found on [13], [8], and [9].



Achieving fully cooperative behavior into a team of the RoboCup Small Size
League (SSL) is specially challenging because, besides being also an adversarial
domain, in an SSL game, the number of robots involved is relatively large and
these robots are highly dynamical, able to reach speeds above five meters per
second. Although many works addressed team play behavior and cooperation
in robot soccer, most of them dealt with specific actions or situations, such as
passing the ball [11]. Few addressed the creation of fully cooperative team archi-
tectures, such as the STP [2], [3]. The paper presents a task allocation system
that can contribute towards the creation of a fully cooperative architecture, and
that is flexible enough to be attached to an existing strategy system.

The proposed MRTA system uses auctions to allow an autonomous strategy
expert, the Coach module, to offer roles for the robots to perform during the
game. The robots use a reinforcement learning accelerated by heuristics [1] [4]
technique, the HAQ(λ), to learn their fitness for each of the roles, given the
present game situation.

The auctioning forms a computationally cheap and efficient method for achiev-
ing team behavior, while the reinforcement learning allows the robots to reason
by themselves about their functions on the team.

The rest of this paper is organized as follows: Sec. 2 discusses the market-
driven methods for task allocation in robotic teams, while Sec. 3 describes the
heuristically accelerated reinforcement learning algorithm used. The proposed
MRTA system is described in Sec. 4, and experiments and results are shown in
Sec. 5. The paper ends with conclusions and future works, in Sec. 6.

2 Market-Based Methods for MRTA

Market-based methods take inspiration from the theory of market economies,
where self-interested agents and groups trade goods and services, seeking to max-
imize their own profits, and while doing that inherently improve their economy
as a whole, making it more efficient. These market-based methods are centered
on the concept of utility functions (sometimes called cost or profit functions),
which represent the ability of the agent to measure its own interest in a partic-
ular item available for trading. In MRTA systems, utility functions commonly
express some measure of the robot’s fitness towards performing a certain task,
a function of the cost estimated to perform it or a junction of both.

Several market-based approaches were developed for multi-robot coordina-
tion, with different characteristics. A good survey on these approaches is pro-
vided on [6] and [9].

Many market-based MRTA systems operate, in one way or another, through
auction mechanisms. In general, auctions are, scalable, computationally cheap,
and have reduced communication requirements. They can be performed cen-
trally, by an auctioneer, or by the robots themselves, in a distributed way. The
MURDOCH [7] architecture, for example, uses first-price auctions, where robots
submit their bids for the tasks being offered, and the highest value wins. This
architecture also allows robots to renegotiate, selling their tasks to other robots,



and contracts are time-limited (the auctioneer can reclaim a task after some
time), two features that give fault-tolerance capabilities to the architecture.

Another interesting architecture is the TraderBots [5], which employs a fully
distributed, fault-tolerant, trading system and applies it into spatial exploration
robotic teams. In the TraderBots, a more sophisticated economy is created, where
robots seek to accumulate profits on the long-term, and can also subcontract as
a mean to take profits for giving guidance to other robots. The MRTA system
proposed in this paper takes a simpler approach, primarily because of the dif-
ferent goals in the robot soccer domain. Nevertheless, these architectures are
rich references for those who want to understand market-based task allocation
systems.

In a work similar to the proposed in this paper, Kose et al. [10] applied
an market-based MRTA system with Q(λ) to simulated robot soccer, but in a
different abstraction level. In that work, the MRTA system is applied directly to
the control of the robot actions, such as to kick or to defend the goal, while in this
paper the MRTA system operates on a higher level abstraction. This paper also
proposes the use of heuristic functions into the reinforcement learning algorithm.

Finally, one interesting direction, not taken in this work, would be to explore
combinatorial auctions and other dynamic programming techniques, as described
in [14]. These methods may improve performance, as they do not act similarly
to greedy task schedulers like first-price auctions do.

3 Heuristically Accelerated Q(λ)

In a Reinforcement Learning problem, the agent learns through interactions with
the environment, by experience, without the need for an environment’s model.
On each interaction step, the agent senses the current state s, takes an action a,
altering the state s, and receives a reinforcement signal r. The agent’s goal is to
learn a policy π that maximizes its returns. The Q(λ) algorithm is an extension
of the popular Q-Learning [21], where reinforcements are not given only for the
terminal states, but also to the states recently visited, making the convergence
to the optimal policy faster. The Q(λ) update rule is as follows:

Q(s, a)← Q(s, a) + αδe(s, a) (1)
δ ← r + γQ(s′, a∗)−Q(s, a) (2)

e(s, a)← γλe(s, a) (3)

Where s is the current state; a is the action performed in s; r is the reward
received; s′ is the new state; γ is the discount factor (0 < γ < 1); α is the
learning rate; and λ controls the decay in the reinforcement for states farther in
the past.

The action selection of the algorithm is:

a← argmax
a

(Q(s′, a)) (4)



A heuristically accelerated reinforcement learning algorithm [1], including the
Heuristically Accelerated Q(λ), is a way to solve the RL problem with explicit
use of a heuristic function H : S × A → < for influencing the choice of actions
taken by the learning agent. The heuristic serves as a starting point to the agent,
a prior knowledge about the domain that biases the decision towards one of the
options. It helps the algorithm to converge faster. The heuristic Ht(s, a) indicates
the importance of performing action a when visiting state s, at time t. The use of
heuristics does not alter the convergence proofs of the Q(λ) ([21], [17]), because
the only change introduced is in the action selection, that is modified from (4)
to:

a← argmax
a

[Q(s′, a) + ξH(s, a)] (5)

Heuristic functions are flexible, they can be adapted or modified on-line, as
learning evolves and new information becomes available, and either prior domain
information or knowledge acquired during initial stages of the learning can be
used to define heuristics.

The next section shows the implemented task allocation system.

4 The Implemented Task Allocation System

The proposed MRTA system, shown in Fig. 1, has essentially two parts: (i) the
auctioning module, that uses first-price auctions as task allocation mechanism,
as shown in Sec. 2, and (ii) the RL module described in Sec. 3, which is present in
each robot and uses the HAQ(λ) algorithm to learn the robot’s utility functions,
or interests, towards bidding for each of the roles offered on the auction. These
modules are described in details along this section, after a brief outline of the
strategy system where the MRTA is inserted in.

Market-based methods use the sound theory of market equilibrium, from
economy. They are computationally efficient, and can be enhanced with machine
learning algorithms in a simple manner, in the form of utility functions. However,
the efficiency of market-based methods is only as good as these utility functions,
used by the agent to reason about its aptitudes and interests. As the creation
of high-level reasoning algorithms that could serve as utility functions in robot
soccer is a difficult task, due to the complexity and dynamism of the environment,
using reinforcement learning as the machine learning algorithm is attractive, as
RL can learn by experiences, without environment models. Also, as shown in
Sec. 3, the encoding of the domain’s knowledge in the form of heuristics allows
faster convergence of the RL algorithm.

The proposed MRTA system is not inspired only by market-based methods,
though. As many of the more recent task allocation architectures [18], [12], it has
characteristics from other MRTA paradigms, such as the use of roles, commonly
found in socially inspired MRTA systems.

The remainder of this section briefly describes the strategy module where the
task allocation is performed, to help on its understanding, and then presents a
description of the actual MRTA system proposed.



Fig. 1. Block diagram of the implemented MRTA system, showing the modules of the
participating robots and the auctioneer.

4.1 Strategy System

This MRTA system is implemented in a strategy module formed by three ab-
straction layers: primitives, skills and roles. The lowest layer has the primitives,
that are simple actions like activating the kicking or dribbling devices, or the
ball presence sensor. On top of this layer is the skills layer, that contains short
duration actions which involve the use of one or more primitives and additional
computation, such as speed estimation, forecasting of the positions of objects
and measurement of the completion of primitive tasks. Passing the ball or aim-
ing and shooting to the goal are examples of skills.

The top layer is the roles layer, which are created using combinations of
skills and the logic required to coordinate their execution, and are intended to
be executed for longer periods. The existent roles are fullback, defender, mid-
fielder, striker, forward and attacker.

4.2 Auctioning Module

The Auctioning module is executed by the Coach agent, responsible for analyzing
the game situation and defining, according to its reasoning of the conditions,
what roles, and in how many instances, will be available for the robots to bid.
At a certain stage of the match, for instance, the Coach can decide that the team
should be more offensive, and then auction more offensive instances, like Strikers
and Attackers, and only one instance of the Defender role. A note: the number
of roles offered can be larger than the number of robots, so as to give to the
robots more selection choices. The Coach also prioritizes the order in which the
roles will be offered, starting by the most offensive when the team is attacking
and by the most defensive otherwise.

The first-price auction algorithm works as follows:



1. Auction announcement. The coach agent starts an auction, offering the
role of highest priority available. A message is sent to the robots, informing
about the open auction and the role being offered.

2. Biddings formulation. Each robot evaluates its utility function and sub-
mits a bidding towards that role.

3. Auction result. The coach defines the winner of the auctioned role and
sends a message to the robots, informing them.

4. Repetition. The process is repeated, without the winner robot and the
previously auctioned role, until there are no more robots without tasks.

An important parameter for the auctioning module is the interval between
auctions. If the auctioneer could monitor the robot’s progress regarding a given
task, to decide whether that task should be auctioned again or not, the adjust-
ment of the interval would not be an issue, but, in the implemented MRTA
system, the tasks (roles), have no defined duration or terminal states. To over-
come this issue, the implemented system expresses the allocation problem as an
instantaneous iterated allocation problem, like in [23] and [22], and the adjust
of the most suitable interval must be made empirically.

4.3 Reinforcement Learning Algorithm - HAQ(λ)

Each robot on the team runs its own HAQ(λ) algorithm (seen in Sec. 3), which
is used to formulate the bidding towards each of the roles being offered by the
auctioneer. The robot’s experience is not shared with teammates. To create the
notion of team work, though, the reinforcements received by all agents are equal,
and given only when a goal is scored or suffered.

The design of the sate space for the RL algorithm is key to effective learning.
In the role selection abstraction level, the RL algorithm’s state space needs to
represent aspects of the dynamics of the environment, such as robot speeds and
positioning over time, statistical distributions about passing skills, as well as ball
positions over time. This concept of capturing attributes with broader temporal
significance appears on other works that operate in similar levels of abstraction,
like [20] and [16].

The state space implemented has 27 dimensions. It uses features obtained by
an algorithm that keeps a histogram of the last 10 x, y positions of the robots
and ball on the field, sampled once per second. At each iteration cycle, this
algorithm extracts dynamical characteristics of the robots using the histogram
data, such as distance traveled and region of the field where the robot stayed
the most, recently. The state space also has features measuring the number of
recent kicks to the goal from both teams, and the amount of time the ball stayed
in the offensive field.

Even using higher level features, the resulting state is still too large and
time to convergence would be prohibitive. Also, the robot cannot be expected
to experience all possible states, is has to learn with limited experience and
having visited only a sparse sample of the state space. Therefore, the Q-value
tables must be approximated using some representation with fewer variables,



a technique known as function approximation. In this work, CMACs with tile
coding and hashing, implemented similarly to the proposed in [21], are used for
function approximation. The CMAC and tile coding detailed description can be
found in details in [15].

For each of the available roles, a set of metrics was created to serve as heuris-
tics for the RL algorithm, using programmer’s domain knowledge. Mostly, these
metrics were extracted from the hand-coded role selection system that existed
previously in the team’s strategy software, such as logic to evaluate the oppo-
nent’s positions in the field and determine if there’s need for defending the goal.
The advantage of the heuristic functions proposed by [1] is that any function
capable of producing a scalar output can be used. Also, if the heuristic is incor-
rect, as the RL algorithm operates and gains experience this heuristic will be
superseded.

Reinforcements are given to all robots on the team when a terminal state,
defined as a goal in favor or against, is reached. For goals in favor the value of
the scalar reinforcement is +100, and -100 for goals suffered. A small negative
reinforcement, -1, is given for every transition that does not reach a terminal
state (goal). This small reinforcement serves to prevent the robots from learning
to do nothing. The heuristic functions are normalized to one order of magnitude
less than the reinforcements, between -10 and +10.

The parameters employed on the HAQ(λ) algorithm are: ε-greedy algorithm,
with ε = 0.1, γ = 0.9, λ = 0.3, and eligibility trace by substitution.

The next section details the experiments performed with the MRTA system
and results obtained.

5 Experiments and Results

To validate the proposed MRTA system, four experiments were performed in
simulation. Three partial implementations of the system, to be serve as bench-
marks, and the actual MRTA system. One short experiment using real robots
was also performed, during the –suppressed competition name– 2010.

The experiments, both simulated and with real robots, used two instances
of the –suppressed name– 2010 software, one using the MRTA system and the
other without it. This software is the same used by the –suppressed name– team
during the RoboCup 2010 in Singapore.

The experiments used a computer with two Intel Xeon Quad Core 2.26GHz
processors and 32GB RAM memory. The simulated results were performed using
the simulator’s time acceleration of 30 times, meaning that 1 second in real
time corresponded to 30 seconds in simulation, thus allowing each trial to be
performed in around 5 days.

5.1 Simulated Experiments

Four simulated experiments, described ahead, were executed. All of them were
executed in 5 independent trials, each containing 20,000 games.



Fig. 2. Comparative of the different MRTA experiment results. The graph shows the
average and standard deviation of the goals scored per match, in groups of 10 games, for
5 independent trials. Each trial had 20,000 games, except the Auction-only experiment.

Auction-only Experiment - On this experiment, the auctioning module
was used and the robots participated without using reinforcement learning. The
robot’s utility functions towards each role were the result of the metrics de-
veloped to be heuristics. The goal was to find the average goals per match at
different intervals between auctions. A notice: as this experiment involved no
learning algorithm, each of its trial had only 500 games.

Table 1 shows the results, with the average goals and respective standard de-
viation. The results of the table indicate that with 5 seconds, the performance is
low, mostly because the actions the robots perform are often cut before conclu-
sion by a too short time between auctions. 15 seconds has the best result among
the tested intervals, while, for 30 and 45 seconds, a degradation in performance
occurs, due to slow response to changes in the game conditions.

Q(λ) Experiment - This experiment consisted in using the Q(λ) algorithm
instead of the auctioning module on the Coach agent, thus allowing it to select
the roles of all the robots centrally. The Q(λ) was used with the same parameters,
ε = 0.1, γ = 0.9 e λ = 0.3. The interval between interactions of the algorithm
was set to 15 seconds or when a terminal state was reached, as in all other
experiments. This interval was used for it was the best result of the experiment
with different intervals described earlier.

Table 1. Influence of the different interval between auctions (in seconds) on the average
goals per match. Table shows average and standard deviation for each case.

Interval (s) Average goals per match

5 2.06± 1.43
15 8.62± 3.47
30 6.31± 2.92
45 3.35± 1.76



This experiment shows how the original Q(λ) algorithm, operating centrally,
performs. The result shows that learning occurs, but the time taken for outper-
forming the hand-coded algorithm is high, as expected.

Auction-Q(λ) Experiment - On this experiment the MRTA system is em-
ployed with its two modules, the auctioning on the Coach and the RL module on
the robots. Only the heuristics were absent from the algorithm, thus leaving all
the computation of utility functions for the Q(λ) algorithm. The initial perfor-
mance is low, but after approximately 7,000 games the performance is already
above the performance of the hand-coded and RL-only algorithms.

Auction-HAQ(λ) Experiment - This experiment uses the proposed MRTA
system in full, with the auctioning module being performed by the Coach and
the robots executing the Heuristically Accelerated Q(λ) (HAQ(λ)) algorithm.
Equation (6) was used to define the value of the function H(p, s), used on (5).
This function is simple: the heuristics of all roles p′ were calculated for the state
s and, for the heuristic with higher value, the result H(p) was used. For all the
other roles, the H(p) value was zero.

H(p, s) =
{
H(p, s) in case argmaxp′(metric(p′, s))

0 otherwise (6)

The result of all the experiments is shown in Fig. 2, from where some obser-
vations can be made. The first of them is that the use of the Q(λ) only leads to
a considerably longer learning curve, what was expected. It can be observed also
that the Auction-Q(λ) experiment has an initial average of 6.2 goals per match,
inferior to both the Q(λ) only and Auction only experiments, which are 8.62
and 7.50, respectively. This happened because the RL algorithm has no initial
domain knowledge, so it bids random values on the auctions, what results in de-
ficient allocations. However, after some time, the performance becomes superior
to the experiment without RL. On the case of the Auctions-Q(λ), after 7,000
games the result is above the Auction only, and after 17,000 games, the average
was already above 13 goals, an increase of more than 50% in comparison Auction
only experiment.

5.2 Experiments with Real Robots

The experiment with real robots is an attempt to explore transfer what was
learned during simulation, as it is not feasible to execute the number of games
needed by the RL algorithm to converge using real robots. The experiment thus
consisted of copying the the Q-values contained in the CMACs and other learning
parameters of the HAQ(λ) algorithm, after the execution of different amounts of
simulated games. These memory blocks were then used in matches in laboratory
between real robots. Table 2 shows the results of 3 independent trials of 50 games
each, averaged. These results have trends similar to the simulated ones, what
indicates that, in fact, learning from simulated environment can be used on the
real robots.



Table 2. Result of the copying of RL knowledge gained during simulation to real
robots, compared to the performance of the Base team, without any MRTA system.

Algorithm Sim. games transferred Average goals (real robots)

Base team (without MRTA) - 3.12± 1.52

0 3.01± 2.34
5000 5.20± 3.11

Auction-HAQ(λ) 10000 7.69± 3.65
15000 7.44± 3.04

One empirical test was also made during an official RoboCup game in 2010,
when the team executed in the real robots the MRTA system with the knowledge
gained during 20,000 simulated games.

Fig. 3 shows extracted logs of this game, where the –suppressed name– team
is the yellow. In Fig. 3(a), the delineated areas in white represent where ball
and adversaries have been in the last few seconds, according to the histograms
described in Sec. 4.3.

A full description of the logs shown in Fig. 3 is the following: (a) the moment
an auction occurs and one of the defense robots takes an Attacker role, while
its teammate heads to the goal, in possession of the ball. (b) A kick to the goal
occurs. (c) Blue team’s goalkeeper defends, bouncing the ball back. Meanwhile,
the yellow robot who just changed roles heads to the ball from the defensive
field. (d) Ball rolls towards the middle of the field, and the mentioned yellow
robot approaches the ball. The robot takes the ball and kicks again to the goal.

Although not resulting in a scored goal, the logs show an example situation
where the MRTA system gave extra offensive strength to the team. The authors
acknowledge this is an evidence rather than a proof. Nevertheless, it is an ev-
idence in line with the results of the experiments performed in simulation and
laboratory.

The next section brings the conclusions of this paper.

6 Conclusions and Future Work

The results of the experiments indicate that the proposed MRTA system was
capable of improving the performance of the team, and that the union of market-
based methods and reinforcement learning resulted in superior performance than
their separated usage, what can be seen on the Fig. 2 graph.

The results also show that the heuristic acceleration could overcome the
initial stage deficiency of RL algorithm, as the heuristics provide the initial
domain knowledge the RL lacks. The heuristically accelerated algorithm also
demonstrated the best results, another evidence in favor of the use of heuristics
in the RL algorithm.

Nevertheless, even with the heuristic acceleration, the reinforcement learning
algorithm still has convergence times too high for use directly. However, it is
very useful for training the task allocation system off-line, outperforming the



(a) (b)
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Fig. 3. Logs of the match (between real robots) on the 2010 competition. The –
suppressed– team is shown in yellow and white.

hand-coded approaches. This prior training can become particularly powerful if
a solution for modeling the opponent’s behavior is used. There are works on this
regard, although the authors have not researched into it as of the writing of this
paper.

The authors also believe that more research into the topic of transfer learning
for RL domains [19] could considerably improve the capabilities to apply what
was learned in simulation to real robots.
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7. Gerkey, B., Matarić, M.: Sold!: auction methods for multirobot coordination.
Robotics and Automation, IEEE Transactions on 18(5), 758–768 (2002)
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