
Chapter 4
Case Based Reasoning, Reinforcement
Learning and Heuristics: a Successful
Combination

Reinaldo A. C. Bianchi

Abstract This paper presents some results of the collaboration between
me and Professor Lopez de Mantaras, who received me as a visiting
researcher at the IIIA from 2007 to 2009. The aim of the collabora-
tion was to investigate a new approach that allows the use of cases in a
case base as heuristics to speed up Single and Multiagent Reinforcement
Learning algorithms, combining Case-Based Reasoning and Reinforce-
ment Learning techniques. This approach, called Case-Based Heuris-
tically Accelerated Reinforcement Learning, builds upon an emerging
technique, Heuristic Accelerated Reinforcement Learning, in which RL
methods are accelerated by making use of heuristic information. Algo-
rithms that incorporates CBR techniques into the Heuristically Acceler-
ated Q-Learning and Minimax–Q were proposed and a set of empirical
evaluations were conducted in a simulator for the robot soccer domain.
Experimental results showed that the algorithms proposed learn faster
than methods using RL, CBR or Heuristics alone.
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4.1 Introduction

Heuristic Accelerated Reinforcement Learning (HARL) [5] is an emerg-
ing technique in which Reinforcement Learning (RL) methods are sped
up by making use of a conveniently chosen heuristic function, which is
used for selecting appropriate actions to perform in order to guide ex-
ploration during the learning process.

HARL techniques are very attractive: as RL, they are based on firm
theoretical foundations. As the heuristic function is used only in the
choice of the action to be taken, many of the conclusions obtained for
RL remain valid for HARL algorithms, such as the guarantee of conver-
gence to equilibrium in the limit – given that some predefined conditions
are satisfied – and the definition of an upper bound for the error [5].
Although several methods have been successfully applied for defining
the heuristic function, a very interesting option has only recently been
explored: the reuse of previously learned policies, using a Case-Based
Reasoning approach.

This paper is the result of a collaboration that started in 2007, when
Professor Lopez de Mantaras received the author as a visiting researcher
at the IIIA. The goal of the collaboration was to investigate possible
combinations of Case-Based Reasoning (CBR) and Single and Multi-
agent Heuristically Accelerated Reinforcement Learning (HARL and
HAMRL) [5, 4] techniques, aiming the speeding up of algorithms by
using previous domain knowledge, stored as a case base. We also pro-
posed two new algorithms, the Case-Based Heuristically Accelerated
Q–Learning (CB-HAQL), which incorporates CBR techniques into an
existing HARL algorithm, the Heuristically Accelerated Q–Learning,
(HAQL), and the Case-Based Heuristically Accelerated Minimax–Q
(CB-HAMMQ), which incorporates CBR into the Heuristically Accel-
erated Minimax–Q (HAMMQ).

The paper is organized as follows: section 4.2 briefly reviews the Sin-
gle and Multiagent Heuristically Accelerated Reinforcement Learning
problem, while section 4.3 describes Case-Based Reasoning. Section 4.4
shows how to incorporate CBR techniques into RL algorithms, in a mod-
ified formulation of the HAQL and HAMMQ algorithms. Section 4.5
describes the domain used in the experiments, presents the experiments
performed, and shows the results obtained. Finally, Section 4.6 provides
our conclusions.
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4.2 Single and Multiagent Heuristically Accelerated
Reinforcement Learning

The single agent RL problem can be formulated as a discrete time, fi-
nite state, finite action Markov Decision Process (MDP), while systems
where multiple agents compete among themselves to accomplish their
tasks can be modeled as a discrete time, finite state, finite action Markov
Game (MG) – also known as Stochastic Game (SG). MDPs and MGs
are well described in several good surveys, such as [11, 13].

Formally, a Heuristically Accelerated Reinforcement Learning
(HARL) algorithm [5] is a way to solve a MDP problem with explicit
use of a heuristic function H : S ×A →ℜ for influencing the choice
of actions by the learning agent. In the multiagent case (HAMRL), a
heuristic function H : S ×A ×O → ℜ is used. H(s,a) or H(s,a,o)
define a heuristic that indicates the importance of performing the action
a when visiting state s. The heuristic function is strongly associated with
the policy: every heuristic indicates that an action must be taken regard-
less of others.

The first HARL algorithm proposed was the Heuristically Acceler-
ated Q–Learning (HAQL) [5], as an extension of the Q–Learning algo-
rithm. The only difference between them is that in the HAQL makes use
of an heuristic function in the action choice rule, a modified ε−greedy
mechanism where a heuristic formalized as a function H(s,a) is consid-
ered:

π(s) =

{
argmaxa

[
Q̂(s,a)+ξ H(s,a)β

]
if q≤ p,

arandom otherwise,
(4.1)

where ξ and β are design parameters that control the influence of the
heuristic function, q is a random value uniformly distributed over [0,1]
and p (0≤ p≤ 1) is a parameter that defines the exploration/exploitation
tradeoff, and arandom is an action randomly chosen among those available
in state s.

In a similar way, the first HAMRL algorithm proposed was the
Heuristically Accelerated Minimax Q (HAMMQ) [4], as an extension
of the Minimax–Q algorithm. Again, the only difference between them
is that in the HAMMQ the heuristic function is used in the action choice
rule:
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π(s) =

{
argmax

a
min

o

[
Q̂(s,a,o)+ξ Ht(s,a,o)

]
if q≤ p,

arandom otherwise,
(4.2)

.
As a general rule, the value of H(s,a) or Ht(s,a,o) used in HAQL

should be higher than the variation among the Q̂(s,a) values for the same
s ∈S , in such a way that it can influence the choice of actions, and it
should be as low as possible in order to minimize the error. For example,
it can be defined for the single agent case as:

H(s,a) =

{
max

i
Q̂(s, i)− Q̂(s,a)+η if a = πH(s),

0 otherwise.
(4.3)

where η is a small real value (usually 1) and πH(s) is the action sug-
gested by the heuristic policy. Convergence of this algorithm was pre-
sented by Bianchi, Ribeiro and Costa [4], together with the definition of
an upper bound for the error.

Despite the fact that RL is a method that has been traditionally ap-
plied in the Robotic Soccer domain, only recently have HARL methods
been used in this domain. Bianchi, Ribeiro and Costa [4] investigated the
use of a HAMRL algorithm in a simplified simulator for the robot soccer
domain and Celiberto et al. [7] studied the use of the HARL algorithms
to speed up learning in the RoboCup 2D Simulation domain. The heuris-
tic used in both of these papers were very simple ones: in the first paper
the heuristic was ‘if the agent is with the ball, go to the opponent’s goal’,
and in the second paper it was simply ‘go to the ball’.

4.3 Case-Based Reasoning

Case-based reasoning (CBR) [8] uses knowledge of previous situations
(cases) to solve new problems, by finding a similar past case and reusing
it in the new problem situation. According to López de Màntaras et
al. [8], solving a problem by CBR involves “obtaining a problem de-
scription, measuring the similarity of the current problem to previous
problems stored in a case base with their known solutions, retrieving
one or more similar cases, and attempting to reuse the solution of the
retrieved case(s), possibly after adapting it to account for differences in
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problem descriptions”. In the CBR approach, a case usually describes a
problem and its solution, i.e., the state of the world in a given instant and
the sequence of actions to perform to solve that problem.

In this work, a case is composed of three parts [14]: the problem
description (P), the solution description (A) and the case scope (K), and
it is formally described as a 3-tuple:

case = (P,A,K). (4.4)

The problem description P corresponds to the situation in which the case
can be used. For example, for a Robotic Soccer problem, the description
of a case can include the robot position, the ball’s position and the po-
sitions of the other robots in the game. For a game with n robots (team-
mates and opponents), P can be:

P = {xB,yB,xR1 ,yR1 , . . . ,xRn ,yRn}. (4.5)

The solution description is composed by the sequence of actions that
each robot must perform to solve the problem, and can be defined as:

A = {R1 : [a11 ,a12 , ...,a1p1
], . . . ,Rm : [am1 ,am2 , ...,ampm ]},

where m is the number of robots in the team, ai j is an individual or
joint action that robot Ri must perform and pi corresponds the number
of actions the robot Ri performs.

The case scope defines the applicability boundaries of the cases, to be
used in the retrieval step. In the case of a robot soccer problem, K can be
represented as circles or ellipsoids centered on the ball’s and opponents’
positions indicated in the problem description. It can be defined as:

K = {τB,τR1 , . . . ,τRn}, (4.6)

where τB is the radius of the region around the ball and τR1 . . .τRn the
radius of the regions around the n robots in the game (teammates and
opponents). The case retrieval process consists in obtaining from the
base the most similar case, the retrieved case. Therefore, it is necessary
to compute the similarity between the current problem and the cases in
the base. The similarity function indicates how similar a problem and a
case are. In most cases, the function is defined by the distance between
the ball and the robots in the problem and in the case.
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Sim(p,c) = dist(Bc,Bp)+
n

∑
i=1

dist(Ri
c,Ri

p), (4.7)

where Bc is the position of the ball in the case and Bp its position in the
problem, Ri

c the position of the Robot i in the case and Ri
p its position

in the problem, and dist(a,b) is the gaussian distance between object a
and b. This distance is computed as follows:

dist(a,b) = e−((ax−bx)
2+(ay−by)

2)/2τ2
, (4.8)

where τ is the radius of the scope around the object. In this work, τ is the
same for the ball and robots positions. The Gaussian distance is used be-
cause the larger the distance between two points, the lower the similarity
between them. Finally, τ is used as a threshold that defines a maximum
distance allowed for two points to have some degree of similarity: if
dist(a,b)> τ , Sim(a,b) = 0.

Before a case can be reused, it might be necessary to adapt it to the
present situation. Adaptation of a case means that the retrieved solution
is modified, by translation, rotation or the addition of steps to the se-
quence of actions in the solution before it can be used. In this work, we
assume that rotation and translation costs are small when compared to
the cost of the additional steps, because the first two are trivial computa-
tions, while the performance of additional steps by the robots are actions
that must be executed (in the simulator or in the real world), taking more
time. Therefore, we define the cost as the number of steps added to the
adapted solution. In this work, the case that will be reused is the one that
maximizes the similarity while minimizing the adaptation cost.

In recent years, CBR has been used by several researchers in the
Robotic Soccer domain. By far, the Robocup 2D Simulation League is
the domain where most work has been done. To mention a few, Lin, Liu
and Chen [12] presented a hybrid architecture for soccer players where
the deliberative layer corresponds to a CBR system, Ahmadi et al. [1]
presented a two-layered CBR system for prediction for the coach and
Berger and Lämmel [3] proposed the use of a CBR system to decide
whether a pass should be performed. A more extensive review of the use
of CBR in Robotic Soccer can be found in the work by Ros et al. [14].
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Table 4.1: The CB-HAQL algorithm.

Initialize Q̂t(s,a) and Ht(s,a) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Compute similarity and cost.
If there is a case that can be reused:

Retrieve and Adapt if necessary.
Compute Ht(s,a) using Equation 4.3 with the

actions suggested by the case selected.
Select an action a using Equation 4.1.
Execute the action a, observe r(s,a), s′.
Update the values of Q(s,a) in the traditional way.
s← s′.

Until s is terminal.
Until some stopping criterion is reached.

4.4 Combining Case-Based Reasoning and Multiagent
Reinforcement Learning

In order to provide HARL algorithms with the capability of reusing pre-
vious knowledge from a domain, we propose two new algorithms, the
Case-Based HAQL, that extends the HAQL algorithm, being capable of
retrieving a case stored in a base, adapting it to the current situation,
and building a heuristic function that corresponds to the case, and the
Case-Based HAMMQ, that extends the HAMMQ in the same way.

As the problem description P corresponds to one defined state of the
set of states S in an MDP, an algorithm that uses the RL loop can be
implemented. Inside this loop, before action selection, we added steps to
compute the similarity of the cases in the base with the current state and
the cost of adaptation of these cases. A case is retrieved if the similarity
is above a certain threshold, and the adaptation cost is low. After a case
is retrieved, a heuristic is computed using Equation 4.3 and the actions
suggested by the case selected. The complete CB-HAQL algorithm is
presented in Table 4.1. The CB-HAMMQ algorithm is essentially the
same one, using Q̂t(s,a,o) and Ht(s,a,o) instead.

Although this is the first work that combines CBR with RL using an
explicit heuristic function, this is not the first work on combining the
both fields. Drummond [9] was probably the first to use CBR to speed
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up RL, proposing to accelerate RL by transferring parts of previously
learned solutions to a new problem. Sharma et al. [15] made use of CBR
as a function approximator for RL, and RL as a revision algorithm for
CBR in a hybrid architecture system; Juell and Paulson [10] exploited
the use of RL to learn similarity metrics in response to feedback from
the environment and Auslander et al. [2] used CBR to adapt quickly
an RL agent to changing conditions of the environment by the use of
previously stored policies.

Our approach differs from all previous works combining CBR and
MRL because of the heuristic use of the retrieved case. Bianchi, Ribeiro
and Costa [4] proved that if the heuristic used is an admissible one, there
will be a speed up in convergence time, if not, the use of the heuristic will
not impede the RL method to converge to the optimal policy. As we use
the case base as a heuristic, if the case base corresponds to an admissible
heuristic there will be a speed up in the convergence time. But if the
case base does not contain any useful case – or even if it contains cases
that implement wrong solutions to the problem, the agent will learn the
optimal solution anyway, by using the RL component of the algorithm
[4].

4.5 Experiments in the Robotic Soccer Domain

Soccer competitions, such as RoboCup, have been proven to be an im-
portant challenge domain for research, and one where RL techniques
have been widely used. The application domain of this paper is a simula-
tor for the robot soccer domain that extends the one proposed by Littman
[13], called “Expanded Littman’s Soccer”. Nevertheless, the technique
proposed in this work is domain independent.

In this domain two teams, A and B, of three players each compete
in a 10 by 15 grid presented in figure 4.1. Each team is composed by
the goalie (g), the defender (d) and the attacker (a). Each cell can be
occupied by only one player. The actions that are allowed are: keep the
agent still, move – north, south, east and west – or pass the ball to another
agent. The action “pass the ball” from agent ai to a j is successful if
there is no opponent in between them. If there is an opponent, it will
catch the ball and the action will fail. Actions are taken in turns: all
actions from one team’s agents are executed at the same instant, and
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Fig. 4.1: The “Expanded Littman’s Soccer” environment.

then the opponents’ actions are executed. The ball is always with one of
the players. When a player executes an action that would finish in a cell
occupied by the opponent, it loses the ball and stays in the same cell. If
an action taken by one agent leads it out the board, the agent stands still.
When a player with the ball gets into the opponent’s goal, the trial ends
and its team scores one point. The starting positions of all players are
random, and the ball is given to one of the agents in a random fashion at
the beginning of a trial.

To solve this problem, six algorithms were used: two traditional RL
algorithms, Q–Learning and Minimax–Q; two Heuristically Accelerated
algorithms, HAQL and HAMMQ; and the CB-HAQL and CB-HAMMQ
algorithms, proposed in section 4.4.

The heuristic used in the HAQL and the HAMMQ algorithms was
defined using a simple rule: if holding the ball, go to the opponents’
goal, not taking into account the teammates’ and opponents’ positions,
leaving tasks such as learning to pass the ball or to divert the opponent
to the learning process.

The heuristic value used in the CB-HA algorithms is computed during
the games, as described in section 4.4. The case base used contains a
set of basic cases that can be used without adaptation costs. The case
base used in this experiment is composed of 5 basic cases, which cover
the most significant situations that are observed during a game in the
expanded Littman’s Soccer environment. These cases can be described
as:

• If the agent is with the ball and there is no opponent blocking it, then
move to the goal.

• If the agent is with the ball and there is an opponent blocking it, then
move up.
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Fig. 4.2: Goals balance for the CBR, Q–learning, the HAQL and the
CB-HAQL algorithms against a random opponent for the Expanded

Littman’s Robotic Soccer.

• If the agent is with the ball and there is an opponent blocking it, then
move down.

• If the agent is with the ball and a teammate is closer to the goal, then
pass the ball to the other agent.

• If the ball is with an opponent and the agent is close to the opponent,
then stay in front of the opponent.

Is important to notice that this case base does not correspond to the op-
timal solution of the problem.

The reward the agents receive are the same for all algorithms: the
agent that is holding the ball receives +100 every time it reaches the
goal.

Thirty training sessions were run for the six algorithms, with each
session consisting of 20,000 games of 10 trials.

Figure 4.2 shows the learning curves for the Single agent (Q-Learning,
HAQL and CB-HAQL) algorithms when the learning team plays against
an opponent moving randomly, and presents the average goal balance,
which is the difference between goals scored and goals received by the
learning team in each match. It is possible to verify that at the beginning
of the learning phase Q-Learning has worse performance than HAQL,
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Fig. 4.3: Goals balance for the CBR, Minimax–Q, the HAMMQ and
the CB-HAMMQ algorithms against a random opponent for the

Expanded Littman’s Robotic Soccer.

and that this has a worse performance than CB-HAQL. As the matches
proceed, the performance of the three algorithms become similar, as ex-
pected.

Figure 4.3 shows the learning curves for the Multiagent (Minimax-Q,
HAMMQ and CB-HAMMQ) algorithms when the learning team plays
against an opponent moving randomly. It is possible to verify that, simi-
larly to the single agent case, HAMMQ performs better than Minimax–
Q, and that CB-HAMMQ is the best one. As it can be seen in this figure,
the Minimax–Q is still learning after 20,000 games: as it is slower than
the other two algorithms, it will only reach the optimal solution after
100,000 games.

In both figures the performance of a team of agents using only the
case base (CBR) can also be observed: a line with values close to 7. As
the case base does not contain the optimal solution to the problem, the
agents have a performance that is worse than the one presented by the
other teams at the end of the learning process. It is also worth noticing
that for similar algorithms, the multiagent implementation have better
results than the single agent one (Minimax–Q is better than Q–Learning,
HAMMQ is better than HAQL and CB-HAMMQ is better than CB-
HAQL). Finally, Table 4.2 shows the average number of goals scored at
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the end of 20,000 games while playing against a random opponent, for
all algorithms, and Table 4.3 shows and the average number of games
won. It can be seen that the agents that are using CBR did not lose a
single game.

Table 4.2: Goals made against Random opponent.

Algorithm Goals made × Goals conceded
Q–Learning (133768 ± 306) × (57473 ± 276)

HAQL (158469 ± 265) × (38971 ± 257)
CB-HAQL (184279 ± 448) × (15417 ± 436)
Minimax–Q (140207 ± 174) × (38498 ± 164)
HAMMQ (166208 ± 150) × (22065 ± 153)

CB-HAMMQ (188168 ± 155) × (11292 ± 140)

Table 4.3: Game results against Random opponent.

Algorithm Games won × Games lost
Q–Learning (16550 ± 60) × (1955 ± 47)

HAQL (19254 ± 29) × (227 ± 15)
CB-HAQL (19987 ± 3) × (0 ± 0)
Minimax–Q (18297 ± 33) × (1037 ± 28)
HAMMQ (19469 ± 9) × (27 ± 4)

CB-HAMMQ (19997 ± 1) × (0 ± 0)

The parameters used in the experiments were the same for all the
algorithms. The learning rate is α = 0,9, the exploration/ exploitation
rate was defined as being equal to 0.2 and the discount factor γ = 0.9
(these parameters are similar to those used by Littman [13]). The value
of η was set to 1. Values in the Q table were randomly initialized, with
0≤ Q(st ,at ,ot)≤ 1.
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4.6 Conclusion

This work presented a new approach to combine Case Based Reason-
ing, Reinforcement Learning and the use of Heuristics in Reinforcement
Learning, which was the result of the work with Professor Lopez de
Mantaras that started in 2007. We have proposed and evaluated two new
algorithms, called Case-Based Heuristically Accelerated Q–Learning
and Minimax–Q (CB-HAQL and CB-HAMMQ), which allow the use
of a case base to define heuristics to speed up Single and Multiagent
Reinforcement Learning algorithms.

The experimental results obtained using a new domain proposed for
the Robotic Soccer games showed that CB-HAMMQ attained better re-
sults than HAMMQ and Minimax–Q alone. For example, after play-
ing 1000 learning trials against a random opponent (Figure 4.3), the
Minimax-Q, still could not produce policies that scored many goals on
the opponent, while the HAMMQ was able to score some goals but less
than the CBR alone and the CB-HAMMQ. Another interesting finding
is that the number of goals scored by the CB-HAMMQ after 1000 trials
was even higher than the number of goals scored by the CBR approach
alone, indicating that the combination of the Reinforcement Learning
and the case base out-performs the use of the case base on its own.

The algorithms presented here are only the initial results of the col-
laboration and friendship between me and Professor Lopez de Mantaras.
As our work together continued, some articles about using CB-HARL
in Transfer Learning problems, a natural extension of this work, have
already been published [6].

Finally, we are convinced that heuristic functions will allow RL al-
gorithms to solve problems where the convergence time is critical, as in
many real time applications. Future works includes incorporating CBR
in other well known RL algorithms, like SARSA, Minimax-SARSA,
Minimax–Q(λ ) and expanding this framework to deal with General Sum
Markov Games [13] using algorithms such as Nash-Q and Friend-or-Foe
Q-Learning.
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