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Abstract
This paper has two main goals: the first is to pro-
pose a new class of Heuristically Accelerated Rein-
forcement Learning algorithms (HARL), the Dis-
tributed HARLs, describing one algorithm of this
class, the Heuristically Accelerated Distributed Q-
Learning (HADQL); and the second is to show that
Ant Colony Optimization (ACO) algorithms can be
seen as instances of Distributed HARLs algorithms.
In particular, this paper shows that the Ant Colony
System (ACS) algorithm can be interpreted as a
particular case of the HADQL algorithm. This in-
terpretation is very attractive, as many of the con-
clusions obtained for RL algorithms remain valid
for Distributed HARL algorithms, such as the guar-
antee of convergence to equilibrium. In order
to better evaluate the proposal, we compared the
performances of the Distributed Q-Learning, the
HADQL and the ACS algorithms in the Traveling
Salesman Problem domain. The results show that
HADQL and the ACS algorithm have similar per-
formances, as it would be expected from the hy-
pothesis that they are, in fact, instances of the same
class of algorithms.

1 Introduction
In the last few years several researchers noticed the similar-
ity between Ant Colony Optimization (ACO) and Reinforce-
ment Learning (RL) [Stützle and Dorigo, 2002; Dorigo and
Blum, 2005]. Despite having different inspirational sources –
ACO is inspired in the foraging behavior of real ants, while
RL is based on Optimal Control Theory –, they have several
characteristics in common, such as the use of Markov Deci-
sion Process as a way to formulate the problem and provide
convergence proofs for the algorithms [Stützle and Dorigo,
2002], and the similarity between the action-value function
in RL and the pheromone in ACO, among other aspects.
The major differences between ACO and RL are that the

first is a distributed approach, with several agents working
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to find a solution to a given problem and that ACO makes
use of a heuristic evaluation of which moves are better. This
last difference – the use of heuristics by the ACO – made it
difficult to completely model an ACO algorithm as a RL one.
Now these differences can be addressed by using a recently

proposed technique, the Heuristically Accelerated Reinforce-
ment Learning (HARL) [Bianchi et al., 2008]. This technique
was proposed to speed up RL methods by making use of a
conveniently chosen heuristic function, which is used for se-
lecting appropriate actions to perform in order to guide ex-
ploration during the learning process. HARL techniques are
based on firm theoretical foundations, allowing many of the
conclusions obtained for RL to remain valid, such as the guar-
antee of convergence to an optimal solution in the limit.
This paper presents two contributions: the first one is the

proposal of a new class of HARL algorithms, the Distributed
HARL (HADRL), and the description and implementation
of one algorithm of this class, the Heuristically Accelerated
Distributed Q-Learning (HADQL), which extends the Dis-
tributed Q-learning (DQL) algorithm proposed by Mariano
and Morales [2001]. The second contribution is a demon-
stration that ACO algorithms can be seen as instances of Dis-
tributed HARLs algorithms. In particular, the paper shows
that the Ant Colony System (ACS) algorithm [Dorigo and
Gambardella, 1997] can be considered a particular case of the
HADQL algorithm. This interpretation is very attractive, as
many of the conclusions obtained for RL algorithms remain
valid for Distributed HARL algorithms, such as the guarantee
of convergence to equilibrium.
The domain studied herein is that of the Traveling Sales-

man Problem, which is used as a benchmark for testing the
algorithms with the goal of evaluating HADQL and compar-
ing it with the DQL and the ACS. Nevertheless, the technique
proposed in this work is domain independent.
The remainder of this paper is organized as follows: Sec-

tion 2 briefly reviews the RL problem and the Distributed Q–
Learning algorithm, while Section 3 describes the HAQL ap-
proach and its solutions. Section 4 shows how to incorporate
heuristics in the DQL algorithm. Section 5 presents the ACO
and the ACS algorithm, and Section 6 shows how ACS can
be seen as a HARL algorithm. Section 7 presents the ex-
periments performed and shows the results obtained. Finally,
Section 8 provides our conclusions and outlines future work.
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2 Reinforcement Learning and the DQL
algorithm

Reinforcement Learning (RL) algorithms have been applied
successfully to the on-line learning of optimal control policies
in Markov Decision Processes (MDPs). In RL, this policy is
learned through trial-and-error interactions of the agent with
its environment: on each interaction step the agent senses the
current state s of the environment, chooses an action a to per-
form, executes this action, altering the state s of the environ-
ment, and receives a scalar reinforcement signal r (a reward
or penalty).
The RL problem can be formulated as a discrete time,

finite state, finite action Markov Decision Process (MDP).
The learning environment can be modeled by a 4-tuple
〈S,A, T ,R〉, where:
• S: is a finite set of states.
• A: is a finite set of actions that the agent can perform.
• T : S×A → Π(S): is a state transition function, where

Π(S) is a probability distribution overS. T (s, a, s′) rep-
resents the probability of moving from state s to s′ by
performing action a.

• R : S ×A → %: is a scalar reward function.
The goal of the agent in a RL problem is to learn an op-

timal policy π∗ : S → A that maps the current state s into
the most desirable action a to be performed in s. One strat-
egy to learn the optimal policy π∗ is to allow the agent to
learn the evaluation function Q : S × A → R. Each action
value Q(s, a) value represents the expected cost incurred by
the agent when taking action a at state s and following an
optimal policy thereafter.
The Q–learning algorithm [Watkins, 1989] is a well-know

RL technique that uses a strategy to learn an optimal policy
π∗ via learning of the action values. It iteratively approxi-
mates Q, provided the system can be modeled as an MDP,
the reinforcement function is bounded, and actions are cho-
sen so that every state-action pair is visited an infinite number
of times. The Q learning update rule is:

Q̂(s, a) ← Q̂(s, a) + α
[

r + γ max
a′

Q̂(s′, a′) − Q̂(s, a)
]

,

(1)
where s is the current state; a is the action performed in s; r
is the reward received; s′ is the new state; γ is the discount
factor (0 ≤ γ < 1); and α, is the learning rate.
In the case of the use of the Q–Learning algorithm to solve

the TSP, the state s corresponds to the city in which the agent
is at a given moment, and the set of actions that an agent
can execute corresponds to the set of cities in the problem,
excluding the current city s.
To select an action to be executed, the Q–Learning algo-

rithm usually considers an ε − Greedy strategy:

π(s) =

{

argmaxa Q̂(s, a) if q ≤ p,

arandom otherwise
(2)

where q is a random value uniformly distributed over [0, 1]
and p (0 ≤ p ≤ 1) is a parameter that defines the explo-
ration/exploitation tradeoff: the larger p, the smaller is the

Table 1: The DQL algorithm [Mariano and Morales, 2001].
Initialize Q(s, a) arbitrarily
Repeat (for n episodes):

Repeat (for each agent i in the set ofm agents):
Initialize s, copyQ(s, a) to Qci(s, a)
Repeat (for each step of the episode):

Select an action a, observe r, s′.
Update the Qci(s, a) values.
s ← s′.

Until s is terminal.
Evaluate them solutions.
Assign reward to the best solution found.
Update the global Q(s, a).

Until a termination criterion is met.

probability of executing a random exploratory action, and
arandom is an action randomly chosen among those available
in state st.
Several authors have proposed distributed approaches to

RL, and various forms of distributed Q–Learning were de-
veloped [Pendrith, 2000; Lauer and Riedmiller, 2000; Gu and
Maddox, 1996; Mariano and Morales, 2001]. One of these
is the Distributed Q-learning algorithm (DQL) proposed by
Mariano and Morales [2001], which is a generalization of the
Q-learning algorithm where, instead of a single agent, several
independent agents are used to learn a single policy.
In Mariano and Morales’ DQL, in addition to the global

Q(s, a) function, each agent i keeps a temporary copy of
Q, the Qci(s, a) that is used to decide which action to per-
form, following an ε-greedy policy. Every time an action is
performed,Qci(s, a) is updated according to the Q-Learning
update rule (Equation 1).
The DQL agents explore different options in a common

environment and when all agents have completed a solution,
their solutions are evaluated, and the global Q(s, a) table is
updated: the best solution (the shortest route made by all
agents in the TSP) is updated using Equation (1), and receiv-
ing a reward r. The DQL algorithm is presented in table 1.
As DQL does not change the update rules of the Q–

Learning algorithm, the same proofs of convergence used
for the standard Q–Learning remains valid for it [Mariano
and Morales, 2001]. Different Distributed Q-Learning al-
gorithms, proposed by other authors, also hold convergence
proofs [Lauer and Riedmiller, 2000].

3 Heuristic Accelerated Reinforcement
Learning

Formally, a Heuristically Accelerated Reinforcement Learn-
ing (HARL) algorithm is a way to solve a MDP problem with
explicit use of a heuristic function H : S × A → % for in-
fluencing the choice of actions by the learning agent. H(s, a)
defines the heuristic that indicates the importance of perform-
ing the action a when visiting state s. The heuristic function
is strongly associated with the policy: every heuristic indi-
cates that an action must be taken regardless of others.
The heuristic function is an action policy modifier which

does not interfere with the standard bootstrap-like update
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mechanism of RL algorithms. A possible strategy for action
choice is an ε − greedy mechanism where a heuristic mech-
anism formalized as a functionH(s, a) is considered, thus:

π(s) =

{

argmaxa

[

F(s, a) #$ ξH(s, a)β
]

if q ≤ p,

arandom otherwise (3)

where:
• F : S × A → % is an estimate of a value func-
tion that defines the expected cumulative reward. If
F(s, a) ≡ Q̂(s, a) we have an algorithm similar to stan-
dard Q–Learning.

• H : S × A → % is the heuristic function that plays a
role in the action choice. H(s, a) defines the importance
of executing action s in state s.

• #$ is a function that operates on real numbers and pro-
duces a value from an ordered set which supports a max-
imization operation.

• ξ and β are design parameters that control the influence
of the heuristic function.

• q is a parameter that defines the exploration/exploitation
tradeoff.

• arandom is an action randomly chosen among those
available in state s.

In general, the value of H(s, a) must be larger than the
variation among the values of F(sa) for a given s ∈ S, so that
it can influence the action choice. On the other hand, it must
be as small as possible in order to minimize the error. If #$ is
a sum and ξ = β = 1, a heuristic can be defined as:

H(s, a) =

{

maxa [F(s, a)] − F(s, a) + η if a = πH(s),
0 otherwise.

(4)
where η is a small value and πH(s) is a heuristic obtained
using an appropriate method.
For instance, let [1.0 1.1 1.2 0.9] be the values of F(s, a)

for four possible actions [a1 a2 a3 a4] for a given state st. If
the desired action is the first one (a1), we can use η = 0.01,
resulting in H(s, a1) = 0.21 and zero for the other actions
(see Figure 1). The heuristic can be defined similarly for other
definitions of #$ and values of ξ and β.
Convergence of the first HARL algorithm— Heuristically

Accelerated Q–Learning (HAQL) — is presented in Bianchi
et al. [2008], together with the definition of an upper bound
for the error in the estimation of Q. The same authors inves-
tigated the use of HARL in multiagent domain, proposing a
multiagent HARL algorithm – the Heuristically Accelerated
Minimax-Q [Bianchi et al., 2007] – and testing it in a simpli-
fied simulator for the robot soccer domain.

4 The HADQL algorithm
The Heuristically Accelerated Distributed Q–Learning algo-
rithm is a HARL algorithm that extends the DQL algorithm
by making use of an heuristic function in the action choice

F(s,a2) = 1.1
H(s,a2) = 0

F(s,a3) = 1.2
H(s,a3) = 0

F(s,a1) = 1.0
H(s,a1) = 0.21

F(s,a4) = 0.9
H(s,a4) = 0

ss t t+1

Figure 1: Suppose a state st and a desired state st+1. The
value of H(st, a1) for the action that leads to st+1 is 0.21,
and zero for the other actions.

rule defined in Equation (3), where F = Q, the #$ operator is
the sum and β = 1:

π(s) =

{

argmaxa

[

Q̂(s, a) + ξH(s, a)
]

if q ≤ p,

arandom otherwise,
(5)

where all variables are defined as in Equation (3). The value
of the heuristic can be defined by instantiating Equation 4:

H(s, a) =

{

max
i

Q̂(s, i) − Q̂(s, a) + η if a = πH(s),

0 otherwise.
(6)

where η is a small real value (usually 1) and πH(s) is the
action suggested by the heuristic policy.
As the heuristic is used only in the choice of the action to

be taken, the DQL operation is not modified (i.e., updates of
the function Q are as in Q–learning), and it thus allows that
many of the conclusions obtained for DQL remain valid for
HADQL. The HADQL algorithm is presented in table 2.
Theorem 1. Consider a HADQL system learning in a deter-
ministic MDP, with finite sets of states and actions, bounded
rewards (∃c ∈ %; (∀s, a), |r(s, a)| < c), discount factor γ
such that 0 ≤ γ < 1 and where the values used on the
heuristic function are bounded by (∀s, a) hmin ≤ H(s, a) ≤
hmax. For this algorithm, the Q̂ values will converge to Q∗,
with probability one uniformly over all the states s ∈ S, if
each state-action pair is visited infinitely often (obeys the Q–
learning infinite visitation condition).

Proof. In HADQL, the update of the value function approxi-
mation does not depend explicitly on the value of the heuris-
tic. The necessary conditions for the convergence of DQL
that could be affected with the use of the heuristic algorithm
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Table 2: The HADQL algorithm
Initialize Q(s, a) andH(s, a) arbitrarily
Repeat (for n episodes):

Repeat (for each agent i in the set ofm agents):
Initialize s, copyQ(s, a) to Qci(s, a)
Repeat (for each step of the episode):

Compute the value ofH(s, a) using Eq. 6.
Select an action a using Eq. 5.
Observe r, s′.
Update the Qci(s, a) values.
s ← s′.

Until s is terminal.
Evaluate them solutions.
Assign reward to the best solution found.
Update the global Q(s, a).

Until a termination criterion is met.

HADQL are the ones that depend on the choice of the ac-
tion. Of the conditions presented in Littman and Szepesvári
[1996]; Mitchell [1997], the only one that depends on the ac-
tion choice is the necessity of infinite visitation to each pair
state-action. As equation 5 considers an exploration strategy
ε– greedy regardless of the fact that the value function is in-
fluenced by the heuristic, the infinite visitation condition is
guaranteed and the algorithm converges.

The condition of infinite visitation of each state-action pair
can be considered valid in practice also by using visitation
strategies such as Boltzmann exploration [Kaelbling et al.,
1996], intercalating steps where the algorithm makes alter-
nate use of the heuristic and exploration, or using the heuristic
during a period of time, smaller than the total learning time.
The domain studied in this work is that of the Traveling

Salesman Problem (TSP), which consists in, given a number
n of cities C = c1, c2, . . . cn and the distance di,j between
them, to find the shortest route that visits each city in C at
least once and then returns to the starting city.
To compute an heuristic function for the TSP problem, we

were inspired by the Nearest Neighbor Heuristic used in sev-
eral works [Russell and Norvig, 1995]. This heuristic states
that the agent starts at some city and from there it visits the
nearest city that was not visited so far. Using this rule, a sim-
ple heuristic that indicates to which city an agent must move
can be defined as the inverse of the distance di,j between the
cities i and j times a constant η:

H(s, a) =
η

di,j
, (7)

where s is the current state (i.e., the current city ci) and a is
the action that takes the agent to the city cj .
The problem with this heuristic is that it does not take into

account that the agents must not visit two times the same city.
Therefore, the action chosen as the one to be done (the heuris-
tic policy) is the one that moves the agent to the nearest city
that was not visited yet. To put this idea in the framework
of equation 6, and taking into account the cities that were al-
ready visited, the heuristic function becomes:

H(s, a) =

{

max
x

Q̂(s, x) − Q̂(s, a) + η if δi,j = min
y

δi,y

0 otherwise.
(8)

where η is a small real value (usually 1), a is the action that
takes the agent from city i to j and δi,j the distances between
the city ci and the cities that have not been visited so far,
defined by:

δi,j =

{

di,j if j has not been visited
∞ otherwise. (9)

Finally, the agents receive only negative reinforcements,
defined as minus the distance between the cities, r = −di,j .

5 The Ant Colony System Algorithm
Based on the social insect metaphor for solving problems,
the use of Ant Colony Optimization (ACO) for solving sev-
eral kinds of problems has attracted an increasing attention
of the AI community [Bonabeau et al., 1999, 2000; Dorigo
and Blum, 2005]. The Ant Colony System (ACS) is an ACO
algorithm proposed by Dorigo and Gambardella [1997] for
combinatorial optimization based on the observation of ant
colonies behavior.
ACS has been applied to various combinatorial optimiza-

tion problems like the symmetric and Asymmetric Traveling
Salesman Problems (TSP and ATSP respectively), and the
quadratic assignment problem.
ACS represents the usefulness of moving to the city swhen

in city r in τ(r, s), called pheromone, which is a positive real
value associated to the edge (r, s) in a graph. There is also
a heuristic η(r, s) associated to the edge (r, s). It represents
an heuristic evaluation of which moves are better. In the TSP,
η(r, s) can be the inverse of the distance δ from r to s, δ(r, s).
An agent k positioned in city r moves to city s using the

following rule, called state transition rule [Dorigo and Gam-
bardella, 1997]:

s =

{

arg max
u∈Jk(r)

τ(r, u) · η(r, u)β if q ≤ q0

S otherwise
(10)

where:
• β is a parameter which weights the relative importance
of the learned pheromone and the heuristic distance val-
ues (β > 0).

• Jk(r) is the list of cities still to be visited by the ant k,
where r is the current city. This list is used to constrain
agents to visit cities only once.

• q is a parameter that defines the exploitation/exploration
rate.

• S is a random city from the list of cities Jk(r).
Ants in ACS update the values of τ(r, s) in two situations:

in the local update step (applied when ants visit edges) and in
the global update step (applied when ants complete the tour).
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Table 3: The ACS algorithm (in the TSP Problem).
Initialize the pheromone table, the ants and the list of cities.
Repeat (for n episodes):

Repeat (for each ant i in the set ofm ants):
Put each ant at a starting city.
Repeat (for each step of the episode):

Chose next city using Equation (10).
Update list Jk of yet to be visited cities for ant k.
Apply local update using Equation (11).

Until (ants have a complete tour).
Apply global update using Equation (12).

The ACS local update rule is:

τ(r, s) ← (1 − ρ) · τ(r, s) + ρ · ∆τ(r, s) (11)

where 0 < ρ < 1 is a the learning rate, and ∆τ(r, s) =
γ · maxz∈Jk(s) τ(s, z).

The ACS global update rule is:

τ(r, s) ← (1 − α) · τ(r, s) + α · ∆τ(r, s) (12)

where α is the pheromone decay parameter, and ∆τ(r, s) is
the inverse of the length of the best tour, given only to the tour
done by the best agent – only the edges belonging to the best
tour will receive more pheromones.
Thus, the pheromone updating formulas aims at placing a

greater amount of pheromone on the shortest tours, achieving
this by simulating the addition of new pheromone deposited
by ants and evaporation. The ACS algorithm is presented in
table 3.

6 ACS as HARL
Now that the HADQL algorithm is defined, we proceed in
explaining how ACS can be seen as an HARL algorithm:
• The Pheromone is the ACS counterpart of DQL Q-
values, where the city r in which the ant is at a defined
moment corresponds to the state s, and the city s the ant
should move to, corresponds to the action a to be taken:
τ(r, s) = Q̂(s, a);

• The heuristic η(r, u) corresponds to the heuristic func-
tionH(s, a);

• The state transition rule (Eq. 10) is the same as the one
used by HARL algorithms (Eq. 3), with the &' operator
being the multiplication, ξ = 1 and β having the same
function;

• The list Jk(r) of cities still to be visited by the ant, which
causes problems for the convergence proof of ACS (be-
cause it cannot be defined as a MDP - see Koenig and
Simmons [1996]), can be encoded as an heuristic, as in
Equation 8;

• The local update step (Eq. 11) of τ(r, s) is made in the
same way as the updating ofQc in DQL (without giving
a reinforcement),

• The global update step (Eq. 12) in ACS corresponds to
attributing the reinforcement to the best solution, which

is made in the updating of the globalQ of DQL, with the
pheromone decay parameter α being equal to the learn-
ing factor and ∆τ(r, s) corresponding to a delayed re-
ward.

ACS and HADQL as proposed in this work differ by the
fact that HADQL partial updates are performed over copies
of the Q-table, and that HADQL updates the best solution at
the same time it provides the reinforcement (that is, the last
step of HADQL corresponds to executing both a local and a
global ACS update at the same time). According to Mariano
and Morales [2001], this avoids multiple updates of the same
Q-table, resulting in updating only relevant solutions and al-
lowing faster convergence.
Finally, by modeling ACS as a HARL, it is possible to

show that ACS also converges to equilibrium in the limit.
Theorem 2. Consider ACS in a deterministic MDP, with fi-
nite sets of states and actions (a finite number of cities to
visit), bounded rewards (∃c ∈ %; (∀r, s), |∆τ(r, s)| < c),
learning rate ρ and pheromone decay parameter α with val-
ues between 0 and 1 and where the values used on the heuris-
tic are bounded by (∀r, s) ηmin ≤ η(r, s) ≤ ηmax. For this
algorithm, the τ̂ values will converge to τ∗, with probability
one uniformly over all the states s ∈ S, if each pair (r, s) is
visited infinitely often.

Proof. The only difference between ACS and HADQL is that
ACS executes more local updates. But the effect of having
more local updates is that the pair (r, s) is visited more often,
assigning rewards more frequently. As HADQL converges,
without executing the local updates, ACS also converges.

Other ways by which it could be shown that ACS con-
verges is by modeling it as a HADQL that includes coop-
eration among the agents, such as one based on Lauer and
Riedmiller [2000], or by using a DQL that only posses one
Q-table, such as in Pendrith [2000].

7 Experiments in the TSP domain
In order to evaluate the performance of the HADQL algo-
rithm and its relation with ACS, this section compares the
performances of these algorithms while solving a set of TSPs.
The Distributed Q-learning (DQL) algorithm is also included
in this comparison, for the sake of comparing the new algo-
rithm with a traditional RL one.
These tests were performed using a standardized dataset,

the TSPLIB [Reinelt, 1995]. This library of problems, which
was used as benchmark by both Dorigo and Gambardella
[1997] and Mariano and Morales [2001], offers standardized
optimization problems such as the TSP, truck loading and un-
loading and crystallography problems. The results, which are
the average of 30 training sessions with 1000 episodes, are
presented in Tables 4, 6, and 5. Ten different problems were
considered: the first 7 ones are TSPs, and the last 3 ones are
ATSPs (Asymmetric TSPs). The number of cities in each
problem ranged from 48 to 170, and is shown in the name of
the problem (for example, 52 cities in the ‘berlin52’ problem,
and so on).
Table 4 presents the best result found by DQL, ACS and

HADQL after 1000 iterations (in 30 trials). It can be seen
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Figure 2: Comparison between the algorithmsDQL, ACS and
HADQL applied to the kroA100 TSP.

Problem Known DQL ACS HADQL
Solution

berlin52 7542 15424 8689 7824
kroA100 21282 105188 25686 24492
kroB100 22141 99792 27119 23749
kroC100 20749 101293 24958 22735
kroD100 21294 101296 26299 23839
kroE100 22068 102774 26951 24267
kroA150 26524 170425 33748 32115
ry48 14422 26757 16413 15398
kro124 36230 122468 45330 42825
ftv170 2755 18226 4228 3730

Table 4: Shortest routes found by the algorithms DQL, ACS
and HADQL after 1000 episodes (best of 30 trials).

that HADQL solutions are better than the solutions from the
other two algorithms for all the problems. The same occurs
for the average of the best results found after 1000 episodes
(Table 5). Figure 2 shows the evolution of the average of the
results found by DQL, ACS and HADQL when solving the
kroA100 problem, and Figure 3 shows the same results for
the ACS and HADQL, with errorbars. It is possible to see in
both figures that HADQL converges faster to the solution.
The average time to find these solutions, shown in Table 6,

indicates that the DQL is the fastest algorithm. This occurs
because DQL converges first, but to a solution of poorer qual-
ity. A comparison between mean times to find the best solu-
tion between the ACS and HADQL algorithms shows that
there is no significant difference between them. It is worth
noticing that small improvements may occur at any time, be-
cause both algorithms are following an ε−greedy exploration
policy. For this reason, the variation in results is very large,
which is reflected in the error measure.
Finally, Student’s t–test [Spiegel, 1998] was used to verify

the hypothesis that the HADQL algorithm produces better re-
sults that the ACS. This test showed that all the results of the
HADQL are better than the ones obtained with ACO, with
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Figure 3: Comparison between the algorithms ACS and
HADQL applied to the kroA100 TSP (with errorbars).

Problem DQL ACS HADQL

berlin52 16427± 540 8589 ± 139 7929 ± 61
kroA100 108687± 2474 26225 ± 542 25114 ± 353
kroB100 105895± 2949 27337 ± 582 24896 ± 463
kroC100 105756± 2710 25985 ± 737 23585 ± 361
kroD100 104909± 2293 26188 ± 533 24441 ± 274
kroE100 108098± 2652 26723 ± 557 25196 ± 359
kroA150 179618± 3397 35816 ± 998 33532 ± 603
ry48 29562 ± 1131 16285 ± 195 15538± 58
kro124 127911± 2485 46394 ± 599 43482 ± 322
ftv170 19278± 373 4532 ± 104 3982 ± 98

Table 5: Average size of the results found by the algorithms
DQL, ACS and HADQL after 1000 episodes (average of 30
trials).

a level of confidence greater than 99,99%, a fact that shows
that the small differences that exists between both algorithms
is enough to make HADQL perform slightly but consistently
better than ACS. The same test applied to the average time to
reach the best result showed that there is no significant differ-
ence in the performance of the two algorithms.
The parameters used in the experiments were the same for

the three algorithms: the learning rate is α = 0, 1, the ex-
ploration/exploitation rate is p = 0.9 and the discount factor
γ = 0.3. The value of β in the ACS algorithm was set to
2 and the value of η = 10 in the HADQL (these parameters
are identical to those used by Dorigo and Gambardella [1997]
and Mariano and Morales [2001]). Values in the Q table were
randomly initiated, with 0 ≤ Q(s, a) ≤ 1. The experiments
were programmed in C++ and executed in a AMD Athlon
2.2MHz, with 512MB of RAM in a Linux platform.

8 Conclusion
In this paper we proposed a new algorithm – HADQL,
showed that ACS can be seen as a HARL algorithm and com-
pared the two algorithms in the TSP domain. The results
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Problem DQL ACS HADQL
berlin52 7 ± 3 12 ± 7 11 ± 6
kroA100 37 ± 13 89 ± 50 73 ± 43
kroB100 44 ± 17 85 ± 44 88 ± 47
kroC100 51 ± 27 82 ± 48 89 ± 38
kroD100 47 ± 21 98 ± 39 74 ± 39
kroE100 48 ± 22 80 ± 43 80 ± 45
kroA150 91 ± 42 267 ± 136 294 ± 154
ry48 6 ± 3 9 ± 6 3 ± 4
kro124 62 ± 25 89 ± 42 95 ± 43
ftv170 113 ± 73 317 ± 122 333 ± 221

Table 6: Average time (in seconds) to find the best solu-
tion using the algorithms DQL, ACO and HADQL, limited
to 1000 episodes.

show that HADQL and ACS have similar performances, as it
would be expected from the hypothesis that they are, in fact,
instances of the same class of algorithms.
Despite the similarity between the HADQL and the ACS

algorithms, the results showed a small advantage for the first
one. We believe that this advantage is caused by the fact that
the HADQL performs partial updates over copies of the Q-
table, avoiding updates without rewards, and by the fact that
the reward given in both algorithms are different.
Future work include testing other forms of combining Q-

values and heuristics in the action selection, and the compar-
ison of other ACO and HARL algorithms, such as comparing
the Max-Min Ant System (MMAS) [Dorigo and Blum, 2005]
with the HAMMQ [Bianchi et al., 2007].
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