
Accelerating autonomous learning by using heuristic

selection of actions

R. A. C. Bianchi (rbianchi@fei.edu.br)

Centro Universitário da FEI

C. H. C. Ribeiro (carlos@comp.ita.br)

Instituto Tecnológico de Aeronáutica

A. H. R. Costa (anna.reali@poli.usp.br)

Escola Politécnica da Universidade de São Paulo

Abstract. This paper investigates how to make improved action selection for online

policy learning in robotic scenarios using reinforcement learning (RL) algorithms.

Since finding control policies using any RL algorithm can be very time consuming, we

propose to combine RL algorithms with heuristic functions for selecting promising

actions during the learning process. With this aim, we investigate the use of heuris-

tics for increasing the rate of convergence of RL algorithms and contribute with a

new learning algorithm, Heuristically Accelerated Q-learning (HAQL), which incor-

porates heuristics for action selection to the Q-Learning algorithm. Experimental

results on robot navigation show that the use of even very simple heuristic functions

results in significant performance enhancement of the learning rate.

Keywords: Reinforcement learning, heuristic function, robot navigation, action

selection.

rbianchi
Inserted Text
 DRAFT

2

1. Introduction

Reinforcement learning (RL) algorithms are very attractive for solving

a wide variety of control and planning problems when neither analytical

model nor a sampling model is available a priori, since many of them are

known to guarantee convergence to equilibrium in the limit (Szepesvari

and Littman, 1996) and to provide model-free learning of adequate

sub-optimal control strategies.

In RL, learning is carried out online, through trial-and-error inter-

actions of the agent with the environment. Unfortunately, convergence

of any RL algorithm may only be achieved after extensive exploration

of the state-action space, which can be very time consuming.

However, the rate of convergence of an RL algorithm can be in-

creased by using heuristic functions for selecting actions in order to

guide the exploration of the state-action space in a useful way. This

paper investigates how to make improved action selections based on

heuristics in on-line policy learning for robotic scenarios. We present a

new algorithm, HAQ-Learning, which incorporates heuristics for action

selection to the well-known Q-Learning algorithm.

A series of empirical evaluation of the algorithm in a commercial

simulator for the robot navigation domain were carried out. We show

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.2

rbianchi
Cross-Out

3

that even using very simple heuristic functions, the performance of the

learning algorithm can be improved.

The paper is organized as follows: Section 2 briefly reviews the

reinforcement learning approach, describes the Q-Learning algorithm,

and presents some approaches to speeding up RL. Section 3 presents

a general formulation and relevant issues for heuristically-accelerated

RL algorithms. Section 4 describes some approaches for the design of

the Heuristics functions. Section 5 shows how the learning rate can be

improved by using heuristics to select actions to be performed dur-

ing the learning process in a modified formulation of the Q-Learning

algorithm. Section 6 describes the robotic navigation domain used in

the experiments, presents the experiments performed, and shows the

results obtained. Finally, Section 7 provides the conclusions and indi-

cates avenues through which the research proposed in this paper can

be extended.

2. Reinforcement Learning

In this section we first review some basic principles of Markov De-

cision Process (MDP) and then present the basic formulation of the

Q-learning algorithm, a well-known RL technique for solving MDPs.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.3

rbianchi
Cross-Out

4

2.1. Markov Decision Processes

Let us consider a single agent interacting with its environment via

perception and action. On each interaction step t, the agent senses

the current state st of the environment, and chooses an action at to

perform. The action at alters the state st into a new state st+1, and a

scalar reinforcement signal rt (a reward or penalty) is provided to the

agent to indicate the desirability of the resulting state.

Formally, a Markov Decision Process problem is defined as follows.

Given:

− A finite set of possible actions a ∈ A and process states s ∈ S,

− A stationary discrete-time stochastic process, modeled by transi-

tion probabilities P (st+1|st, at), and

− A finite set of bounded reinforcements (payoffs) R, with r(s, a) ∈

ℜ,

the agent must try to find out a stationary policy of actions a∗t = π∗(st)

which maximizes the expected discounted value function:

V π(s0) = lim
M→∞

E[
M
∑

t=0

γtr(st, π(st))] (1)

for every state s0. The superscript π indicates the dependency on the

followed action policy, via the transition probabilities P (st+1|st, at =

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.4

rbianchi
Cross-Out

5

π(st)). The discount factor 0 ≤ γ < 1 forces recent reinforcements to

be more important than remote ones. It can be shown that the optimal

cost function

V ∗(s0) = lim
M→∞

E[
M
∑

t=0

γtr(st, π
∗(st))] (2)

is unique, although there can be more than a single optimal policy

π∗ (Puterman, 1994). It must be stressed that formulations other than

based on the discounted cost function are also possible (Bertsekas,

1995).

2.2. The Q-Learning Algorithm

The goal of the agent in the most common formulation of the RL

problem is to learn an optimal policy of actions π∗ that maximizes

the expected discounted value function for any starting state, when

the reinforcements R and the transition probabilities P are not known.

As the agent does not have a model for R and P , the action pol-

icy must be learned through trial-and-error interactions of the agent

with the environment, i.e., the RL learner must explicitly explore its

environment.

In an MDP there is at least one optimal policy π∗ that is stationary

and deterministic (Bertsekas, 1995). One strategy to learn an optimal

policy π∗ when P and R are not known in advance is to allow the agent

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.5

rbianchi
Cross-Out

6

to learn the action value measurement Q(st, at), defined as

Q(st, at) = r(st, at) + γ
∑

st+1∈S

P (st+1|st, at)V
∗(st+1) (3)

which represents the expected discounted cost for taking action at when

visiting state st and following an optimal policy thereafter.

The Q-learning algorithm (Watkins, 1989) iteratively approximates

the function Q, provided the system can be modeled as an MDP, the

reinforcement function is bounded, and actions are chosen so that every

state-action pair is visited an infinite number of times. The Q learning

rule is:

Q(s, a)← Q(s, a)+

α[r(s, a) + γ maxa′ Q(s′, a′)−Q(s, a)] (4)

where s is the current state, a is the action performed in s, r(s, a) is

the reinforcement received after performing a in s, s′ is the new state,

γ is a discount factor (0 ≤ γ < 1), and α is the learning rate (α > 0).

One of the problems with the Q-learning algorithm is that, as the

agent iteratively estimates Q, at early stages learning is basically ran-

dom exploration. Also, update of the Q value is made one state-action

pair at a time, for each iteration with the environment. The larger the

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.6

rbianchi
Cross-Out

7

environment, the longer trial-and-error exploration takes to approxi-

mate the function Q. To alleviate these problems, several techniques,

described in the next section, were proposed.

2.3. Approaches to speed up Reinforcement Learning

The SARSA Algorithm (Sutton, 1996) is a modification of Q-learning

that admits the next action to be chosen randomly according to a

predefined probability, separating the choice of the actions to be taken

from the update of the Q values.

SARSA learning rule does not includes the maximization that exists

in Q-learning learning rule (see equation 4), and is defined as:

Q(s, a)← Q(s, a)+

α[r(s, a) + γQ(s′, a′)−Q(s, a)]. (5)

If a′ is chosen according to a greedy policy, SARSA becomes equiv-

alent to Q-learning and a′ = maxa′ Q̂(s′, a′). But if a′ is selected ran-

domly according to a predefined probability distribution, the SARSA

algorithm can achieve better performance than Q-learning, particularly

in cases where the set of actions is large (Sutton, 1996).

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.7

rbianchi
Cross-Out

8

It is straightforward to design an algorithm to learn the policy of

actions in execution time: at each iteration the algorithm estimates Q̂π

from π, and, at the same time, changes the probability distribution

that is used to choose the next action towards greediness. In this way,

SARSA estimates the policy of actions at the same time used to interact

with the environment. Like Q-learning, this method has been proved to

converge to optimal action values, provided that actions asymptotically

approach a greedy policy (Szepesvari, 1997).

Two different methods have been proposed that combine eligibility

traces with Q-learning and SARSA: the Q(λ) (Watkins, 1989) and

the SARSA(λ) (Rummery and Niranjan, 1994). Eligibility traces, pro-

posed initially in the TD(λ) algorithm (Sutton, 1988), are used to speed

up the learning process by tracking visited states and adding a portion

of the reward received to each state that has been visited in an episode.

The eligibility of a state defines how often it was visited in the

recent past. It can be used to increase the influence of states closer to

the reward, and can be defined as:

e(u) =
t

∑

k=1

(λγ)(t−k)δs,sk
, (6)

where: u is the state that is being updated, t is the update time, λ is a

discount factor for the temporal differences (0 ≤ λ ≤ 1), γ is a discount

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.8

9

factor for future rewards (0 ≤ γ < 1) and δs,sk
equals 1 if s = sk and 0

otherwise (Kronecker Delta).

Q(λ) and SARSA(λ) extends the concept of eligibility to include

the state-action pair, by using:

e(u, v) =























γλe(u, v) + 1 if u = st e v = at,

γλe(u, v) otherwise.

(7)

Instead of updating a state-action pair at each iteration, all pairs

with eligibilities different from zero are updated, allowing the rewards

to be carried over several state-action pairs.

The Dyna architecture was proposed by Sutton (1990) as a way

to find an optimal policy by learning the environment model. It is

characterized by the iterative learning of a direct model of the transition

probabilities P and of rewards R, simultaneously with the application

of some method to compute the action values and action policy.

The Dyna architecture allows for the execution of real and hypo-

thetical experiences: real experiences receive the reinforcement from

the environment and are used to update the world model; hypothetical

experiences are executed using the learned model, and can be used

to explore actions that the real agent has never tried before or to

probe state-action pairs. In this way, the Dyna Architecture allows

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.9

10

the exploration to be done both in real and hypothetical experiences.

For the latter, this exploration can be done in a way to encourage other

exploration policies.

Sutton (1990) proposed two different algorithms for the Dyna ar-

chitecture: Dyna-PI, that uses the well known Policy Iteration method

(Bertsekas, 1987) to compute the action values and action policy; and

Dyna-Q, that determines the policy in a way similar to the one im-

plemented in the Q-learning algorithm. In both algorithms, at each

iteration one real experiment and k hypothetical experiments can be

executed. In this way, Dyna-Q requires k more times to execute than

Q-learning, but in practice requires an order of magnitude less steps to

find the optimal policy (Kaelbling et al., 1996).

A natural improvement that can be made to the methodology im-

plemented in the Dyna architecture was proposed independently in two

similar techniques, called Queue-Dyna (Peng and Williams, 1993) and

Prioritized Sweeping (Moore and Atkeson, 1993). In these techniques,

instead of randomly choosing the states for updates from the hypothet-

ical experiments, a dynamic priority mechanism is used. It indicates

the importance of updating a state: the priorities of the states that do

not need update are diminished, and higher priorities are set to states

in need of updating. The main difference between Prioritized Sweeping

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.10

11

and the Queue-Dyna is that the former updates only the value function

V , while the latter considers the action value function Q.

Butz (2002) proposed the combination of an online model learner

with a state value learner in a MDP. The model learner learns a predic-

tive model that approximates the state transition function of the MDP

in a compact, generalized form. State values are evaluated by means

of the evolving predictive model representation. In combination, actual

action choice depends on state values predicted by the predictive model

yielding anticipatory behavior. It is shown that this combination can

be applied to further speed up learning of an optimal policy.

In most RL algorithms, even if two problems are very similar at some

abstract level, solving one will not help to solve the other and an exten-

sive re-learning effort may be required. Drummond (2002) proposed a

system that accelerates RL by transferring parts of previously learned

solutions to a new problem, exploiting the results of prior learning

to speed up the process. The system identifies subtasks on the basis of

stable features that arise in the multi-dimensional value function due to

the interaction of the learning agent with the world during the learning

process. A partitioning of the state space and of the value function is

made, defining individual subtasks. The relationship among subtasks

is represented in a composite graph, which represents the whole task.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.11

12

As the agent learns, it can access a case base that contains clipped

parts of previous learned value functions that solves individual prob-

lems. The graphs are used to index solution functions stored in that case

base. Knowledge transfer is achieved by transforming and composing

functions from the base to form an approximation to the solution of

the new task. This approximation is then used to reinitialize the value

function of the new learning process. Drummond argues that “it is not

necessary for the transfer to produce an exact solution for the new task,

and that it is sufficient that the solution is close enough to the final

solution to produce an average speed up” (Drummond, 2002, page 60).

The idea of identifying features in the value function and thus pro-

ducing learning acceleration, as proposed by Drummond (2002), as

well as the idea of learning the environment model to speed up the

action policy computation are ideas that inspired the present work. We

propose to integrate all information available in a heuristic function

that guides the state-space exploration.

2.4. Combining Heuristics and Reinforcement Learning

An interesting property of the RL algorithms described in previous

sections is that, although the exploration-exploitation tradeoff must

be addressed, the Q values will converge to the optimal value Q∗,

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.12

13

independently on the exploration strategy employed, provided all state-

action pairs are visited often enough (Watkins, 1989). Our idea is to

use this facility to propose a general formulation for a variation of the

RL algorithms that considers the use of heuristic-guided exploratory

action policies. Conveniently chosen heuristics can be used for selecting

appropriate actions to perform in order to guide exploration of the

state-action space during the learning process. This way, the learning

process can be conducted in the direction of useful regions of the state-

action space, improving the learner behavior. In many cases, the total

learning time for finding an optimal policy may not be reduced, but

learning is quickly conducted towards regions of the state space which

allow for reasonably good action policies, already at initial stages of

the learning process.

The Q(λ) and the SARSA(λ) algorithms extend the original Q-

learning and SARSA algorithms by, instead of updating a state-action

pair at each iteration, updating all pairs in the eligibility trace, allow-

ing the reward to be spread over several pairs. By doing this, both

algorithms modify the way in which the update of the value function

estimate is done, without explicitly modifying the exploration policy.

The Dyna architecture main characteristic is to allow the execution

of hypothetical experiences, integrating execution-time-planning and

learning by alternately interacting with the real environment and on

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.13

14

its learned model. In this way, this architecture aim at encouraging and

increasing exploration.

The use of heuristics to guide exploration is the fact that most

distinguishes the algorithm proposed in next section from algorithms

based on the Dyna architecture – including algorithms such as Dyna-

Queue and Prioritized Sweeping – as well as from every other RL

algorithm. The use of an explicit heuristic function to guide exploration

of the state-action space reduces learning time, and, as the action value

update rule is not modified, learning will further refine the defined

heuristics and quickly remove any error.

Finally, using heuristics in a learning algorithm is an idea pursued in

other contexts, such as in Ant Colony Optimization (Bonabeau, Dorigo

and Theraulaz, 2000). However, the full possibilities and specially a

convenient formalization for their use have not been fully explored in

the Machine Learning literature. This motivates the definition of a

general class of algorithms that combines heuristics and RL techniques.

3. Heuristically Accelerated Learning - HAL

Formally, a Heuristically Accelerated Learning (HAL) algorithm is a

way to solve a MDP problem with explicit use of a heuristic function

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.14

15

H : S × A → ℜ for influencing the choice of actions by the learning

agent. Ht(st, at) defines the heuristic that indicates the importance of

performing (at time t) action at when visiting state st.

An important characteristic of a HAL algorithm is that the heuristic

function can be modified or adapted online, as learning progresses and

new information for enhancement of the heuristic becomes available.

In particular, either prior domain information or initial learning stage

information can be used to define heuristics to accelerate learning.

Additionally, we must point out that there are many methods, which

can be used to extract a convenient heuristic. Considering the great

number of domains suitable for RL algorithms and the vast number of

knowledge extraction methods, it is not difficult to informally validate

this assumption.

A generic procedure for HAL can be defined as a four-step pro-

cess, sequentially repeated until a stopping criteria is met, according

to Table I.

3.1. The Heuristic Function H

The heuristic function is an action policy modifier which does not

interfere with the standard bootstrap-like update mechanism of RL

algorithms. A proposed strategy for action choice is an ǫ−Greedy mech-

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.15

16

Table I. The “Heuristic Accelerated Learning” algorithm

Produce an arbitrary estimation for the value function.
Define an initial heuristic function Ht(s, a) using an appropriate method.
Observe the current state s.
Repeat:

Select an action a by adequately combining the heuristic function and
the value function.

Execute action a.
Receive reinforcement r(s, a) and observe next state s′.
Update Ht(s, a) using an appropriate method.
Update value function.
Update state s← s′.

until a stopping criteria is met,
where s = st, s′ = st+1 and a = at.

anism where a heuristic mechanism formalized as a function Ht(st, at)

is considered, thus:

π(st) =























arg maxat

[

Ft(st, at) ⊲⊳ ξHt(st, at)
β
]

if q ≤ p,

arandom otherwise

(8)

where:

− F : S ×A → ℜ is an estimate of a value function that defines the

expected cumulative reward. If Ft(st, at) ≡ Q̂t(st, at) we have an

algorithm similar to standard Q–Learning.

− H : S × A → ℜ is the heuristic function that plays a role in

the action choice. Ht(st, at) defines the importance of executing

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.16

17

action at in state st. Note that the t index means that the heuristic

function can change through time.

− ⊲⊳ is a function that operates on real numbers and produces a value

from an ordered set which supports a maximization operation.

− ξ and β are design parameters that control the influence of the

heuristic function.

− q is a random value uniformly distributed over [0, 1] and p (0 ≤

p ≤ 1) is a parameter that defines the exploration/exploitation

tradeoff: the larger p, the smaller is the probability of executing a

random exploratory action.

− arandom is an action randomly chosen among those available in

state st.

In general, the value of Ht(st, at) must be larger than the variation

among the values of F(st, a) for a given st ∈ S, so that it can influence

the action choice. On the other hand, it must be as small as possible in

order to minimize the error. If ⊲⊳ is a sum and ξ = β = 1, a heuristic

can be defined as:

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.17

18

Ht(st, at) =























maxa [Ft(st, a)]− Ft(st, at) + η if at = πH(st),

0 otherwise.

(9)

where η is a small value and πH(st) is a heuristic obtained using an

appropriate method.

For instance, let [1.0 1.1 1.2 0.9] be the values of F(st, a) for four

possible actions [a1 a2 a3 a4] for a given state st. If the desired action is

the first one (a1), we can use η = 0.01, resulting in H(st, a1) = 0.21 and

zero for the other actions (see Figure 1). The heuristic can be defined

similarly for other definitions of ⊲⊳ and values of ξ and β.

The function ⊲⊳ is the last remaining item to be discussed, according

to the formulation presented in Equation 8. Any function with a real-

valued domain producing values from an ordered set can be used. The

use of simple addition is particularly convenient, as it allows for an

analysis of the influence of H in a manner similar to the analysis of

heuristics in informed search algorithms, such as A∗ (Hart et al., 1968;

Russell and Norvig, 2002).

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.18

19

F(s,a2) = 1.1
H(s,a2) = 0

F(s,a3) = 1.2
H(s,a3) = 0

F(s,a1) = 1.0
H(s,a1) = 0.21

F(s,a4) = 0.9
H(s,a4) = 0

ss t t+1

Figure 1. Suppose a state st and a desired state st+1. The value of H(st, a1) for the
action that leads to st+1 is 0.21, and zero for the other actions.

4. Definining the Heuristic Function H

A fundamental point to be addressed is how to discover, at an initial

learning stage, which action policy must be used in order to accelerate

learning. From the definition of a HAL algorithm and from the analysis

of heuristic functions of the last section, this issue translates into how

to define the heuristic function in an initial situation.

Naturally, there are many methods that can be used to define a

heuristic function. We divide these in two main classes:

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.19

20

CompositionEstimation

Value Function Structure
Heuristic

Extraction

Heuristic

Domain

Structure

Figure 2. General scheme for methods to infer the Heuristic Function.

− The class of methods that use prior domain knowledge to infer a

heuristic. These methods can either establish an ad-hoc heuristic

for the problem to be addressed, or reuse action policies previ-

ously learned in similar tasks to define heuristics in a case-based

approach.

− The class of methods that use information from the learning pro-

cess itself to infer a heuristic in execution time. Information used

to infer the heuristic can originate from, for instance, the current

action policy, the value function, the state space trajectory, etc.

Excluding heuristics that are defined in an ad hoc manner, methods

to infer a heuristic function work in two stages. The first stage extracts

domain structure information from the value function F, and the second

stage finds the heuristic for the action policy – either in execution time

or from a database of cases – using the information extracted from F.

We call these stages respectively Structure Extraction and Heuristic

Composition (see Figure 2).

As an example of a case-based method for heuristic extraction is

a policy reuse approach, where information extracted from the value

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.20

21

function is matched against a case base for defining a policy that can be

used as an heuristic for a new problem (Drummond, 2002). In general,

case-based methods can face two problems: first, how to extract relevant

features of a case for indexing the case base, and second, how to adapt

a previous case for a current matched situation.

4.1. Structure Extraction

A simple technique for extracting information about the problem struc-

ture during the learning algorithm execution time is to use the in-

formation derived from exploration. This technique, called “Structure

from Exploration”, is exemplified in Subsection 6.1 for a mobile robot

domain.

This technique derives a crude estimate of the transition proba-

bilities P̂t(st, at, st+1), by annotating the results of every action per-

formed by the agent. In the case of a mobile robot, for every move

a record of success or failure (in the case of an obstacle blocking the

move) is done. Along time, this will generate a representation of the

environment. Other approaches for extracting structure are describe

elsewhere (Bianchi, 2004).

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.21

22

4.2. An Approach for Heuristics Composition: Heuristic

Backpropagation

In the same way that a variety of methods can be used to extract

structure, different approaches can be used in the heuristic composition

stage. We present here a method for on-line automatic composition of

a heuristic from the extracted domain structure: the Heuristic Back-

propagation method. The basic idea is to backpropagate, from a set of

final states, the correct policies that lead to those states. For instance,

in a single goal problem, once a terminal state is reached, the heuristic

is defined as the set of actions that, from the immediately preceding

states, leads to the terminal state. This heuristic is propagated recur-

sively to the predecessors of the states that the heuristic have already

defined, until the heuristics for all states are defined.

In a problem with many goal states the same algorithm can be used,

but instead of starting propagation from a single state, it considers all

the states from the set of final states. If the complete set of final states

is not known a priori, the algorithm generates the heuristic using all

known final states and, in the event of the discover of new final state,

the heuristic is recomputed.

Heuristic Backpropagation is an application of the basic Dynamic

Programming algorithm (Bertsekas, 1987, p. 12), which proceeds back-

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.22

23

wards from the final states to the initial states, defining the policy

and the cost of the transitions. In domains where all the transition

probabilities and states are known, both work in the same way. If only

part of the environment structure is known, Heuristic Backpropagation

is performed only for states that have been visited. In the case of

autonomous robotic mapping, an environment model (i.e., a map) is

gradually constructed. In this case, Heuristic Backpropagation can then

be performed in parts of the environment that were already mapped.

Combining any structure extraction method with Heuristic Back-

propagation generates an algorithm to define the heuristic function. In

Section 6, we consider this to define a new algorithm, named “Heuristics

from Exploration”. It extracts information about the structure of the

environment by means of the “Structure from Exploration” method,

and then defines the heuristic using Heuristic Backpropagation.

5. Heuristically Accelerated Q–Learning : HAQL

HAQL is a heuristic-based extension of the Q–Learning algorithm (Sec-

tion 2.2). In order to implement HAQL, it is necessary to define an

action policy rule based on Equation 8 and a method for heuristic

updating. We first consider a modification of the standard ǫ−Greedy

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.23

24

Q–Learning action policy, incorporating the heuristic function as an

addition (with β = ξ = 1) to the action value function. Thus:

π(st) =























arg maxat

[

Q̂(st, at) + Ht(st, at)
]

if q ≤ p,

arandom otherwise.

(10)

The value of the heuristic is defined by instantiating Equation 9:

H(st, at) =























maxa Q̂(st, a)− Q̂(st, at) + η if at = πH(st),

0 otherwise.

(11)

Convergence of this algorithm is presented in (Bianchi, 2004), to-

gether with the definition of an upper bound for the error.

The complete HAQL algorithm is presented in Table II. Note that

the only modifications made to the original Q-learning algorithm are

a heuristic function for the action choice and an update step for the

function Ht(st, at).

The function Ht(st, at) can be extracted by using any method. Nat-

urally, a careful choice can accelerate computation and increase the

generality of the algorithm. The experiments described below show

how HAQL can be used together with “Heuristic from Exploration”

method described in Section 4 in Mobile Robot domains.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.24

25

Table II. The HAQL Algorithm.

Initialize Q(s, a).
Define an initial heuristic function Ht(s, a) using an appropriate method.
Observe the current state s.
Repeat:

Select action a using equation (10).
Execute action a.
Receive reinforcement r(s, a) and observe next state s′.
Update the values of Ht(s, a) using an appropriate method.
Update the values of Q(s, a) according to the update rule:
Q(s, a)← Q(s, a) + α[r(s, a) + γ maxa′ Q(s′, a′)−Q(s, a)].
Update state s← s′.

Until a stopping criteria is met,
where: s = st, s′ = st+1, a = at and a′ = at+1.

6. Experimental Results in Mobile Robot Domains

A basic task of an autonomous mobile robot is to navigate in an envi-

ronment, aiming to reach goals in specified positions, while deviating

from obstacles. This section present results for three different experi-

ments: a study on the “Heuristic from Exploration” method (Subsec-

tion 6.1), the use of the HAQL for simulated navigation in the grid

world domain (Subsection 6.2) and the use of HAQL for simulated

navigation of a real mobile robot (Subsection 6.3).

As reinforcement learning requires a large number of episodes for

convergence, we initially analyzed HAQL in simulated domains. In all

the experiments (with the exception of the one related in Section 6.3)

the domain is a N × M grid world where a mobile robot can — at

discrete time steps — choose among four possible actions N, S, E e W

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.25

26

(respectively North, South, East and West), which identify the move-

ment direction in global coordinates. Each action moves the robot to the

cell corresponding to the movement direction established by the action.

The environment is composed by walls, identified as positions to which

the robot cannot move (see Figure 3). This domain has been used very

often for experiments on mobile robot navigation learning (Drummond,

2002; Foster and Dayan, 2002; Kaelbling et al., 1996).

Training consists of a sequence of executed episodes: each episode

starts by positioning the robot in a randomly chosen cell and finished

once the goal cell (goal state) is reached (Mitchell, 1997).

The experiments reported here were programmed in C++ (GNU

g++ compiler under Linux) and executed in a 256 MB RAM Pentium

3-500MHz computer (for the experiments in Subsections 6.1 and 6.2)

and in a 512 MB RAM Pentium 4m-2.2GHz computer (Subsection 6.3).

Finding an optimal policy for small grid worlds is not difficult and

can be done via a Dynamic Programming algorithm. Figure 4 shows

the optimal policy found by the Policy Iteration algorithm after 38

iterations that took a total of 811 seconds for completion.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.26

27

G

R

Figure 3. Room with walls (represented by dark lines) discretized over a position
grid (represented by lighter lines). G represents the goal position and R the robot.

Figure 4. Optimal policy for a mobile robot in a 25 x 25 environment with some
walls. Double arrows mean that for a given position it does not make any difference
which of the two actions to choose.

6.1. Use of “Heuristics from Exploration” Methods in

Execution Time

This section presents experiments that corroborate the hypothesis that

information derived from the initial stages of training allows the defini-

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.27

28

tion of heuristics that can be used to accelerate learning. We used the

Q– Learning algorithm in the domain presented in Section 3, with the

following parameters: γ = 0.99, α = 0.1 and exploration rate of 10%.

Reinforcements were defined as 10 for reaching a goal state (located in

the upper right corner of the environment) and −1 for every executed

action.

6.1.1. Structure Extraction

For the experiments in the robotic domain reported in this paper, good

results were obtained with the method “Structure from Exploration”.

As presented in Subsection 4.1, this technique derives a crude esti-

mate of the transition probabilities P̂t(st, at, st+1), by annotating the

results of every action performed by the agent. In a grid world with

thick walls (i.e., walls that correspond to entire cells), this method

generates a sketch of the map environment by annotating the visited

cells, similarly to occupancy-grid methods (Elfes, 1989). The generated

structure is shown in Figure 5, where in black are cells that were

visited at least once and in white are never visited cells. This result

was obtained after 100 training steps, using exploration rate of 10% to

allows the visitation of all possible cells.

For static deterministic environments this method can construct

a perfect map of the environment, provided all the state-action pair

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.28

29

Figure 5. Structure generated by the method “Structure from Exploration”, where
in black are visited cells and in white never visited cells.

visitations are recorded. In the case of non-deterministic environments

subject to localization errors — a very common situation in mobile

robot navigation — it is necessary to find out which states have been

visited less often, using a thresholding process with respect to the

visitation frequency (Subsection 6.3).

The results above can also be observed for grid worlds with thin

walls (i.e., walls that correspond to cell frontiers). Notice that this is

the case where state transition is forbidden not necessarily due to a

physical obstacle. Tests with other methods for structure extraction

are described elsewhere (Bianchi, 2004).

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.29

30

6.1.2. Construction of the Heuristic

For constructing a heuristic from the structure we used the “Heuristic

Backpropagation” method proposed in Subsection 4.2.

Figure 6 shows, step by step, the construction of the heuristic for

an agent that must reach a single goal state located at the upper right

corner of the image, based on the structure presented in Figure 5.

From left to right and top to bottom, we can see the propagation

of the heuristic for the first 24 iterations of the algorithm. At each

iteration, the heuristic is defined for all the states predecessors of the

states that the heuristic have already been defined. For example, in the

first image, there are only two states that lead to the final state. After

71 iterations, the same optimal policy presented in Figure 4 is produced

(Figure 8-a). The only difference between them is that double arrows in

the former figure mean that for a given position there are two equally

good actions to choose, while in the latter only one action of all equally

good actions for a state is defined.

Figure 7 presents the result of the same algorithm for problems with

many goal states. Instead of only one final state, there are four final

states, located at the four corners of the environment. The algorithm

builds up the heuristic by starting propagation from all the states in

the set of final states. From left to right and top to bottom, it is shown

the propagation of the heuristic for the first 24 iterations (from a total

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.30

31

of 27) of the algorithm. The resulting heuristic is presented in Figure 8-

b. Finally, Figure 9 presents the heuristic computed for four different

multiple-goals problems, with two, four, five and twenty-five final states.

6.2. Experiments on HAQL

Once a heuristic has been found, we must assess its performance as a

learning acceleration mechanism for the HAQL algorithm. For a first

test, we produced three experiments using the “Heuristic from Explo-

ration” method in a mobile robot domain: a) robotic navigation in an

unknown environment, b) robotic navigation in a modified environment

and c) robotic navigation with goal repositioning. These experiments

have been used elsewhere for testing learning algorithms in mobile

robotic domains (Drummond, 2002).

The heuristic function is defined from Equation 11 as:

H(st, at) =























maxa Q̂(st, a)− Q̂(st, at) + 1 if at = πH(st),

0 otherwise.

(12)

This is calculated only once, in the first learning episode. In the

following episodes, the value of the heuristic is maintained, allowing the

learning algorithm to overcome bad action indications (e.g., if H(st, at)

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.31

32

Figure 6. Heuristic defined based on the structure presented in Figure 5.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.32

33

Figure 7. Heuristic defined for a problem with four final states, based on the
structure presented in Figure 5.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.33

34

(a) (b)

Figure 8. Heuristic defined for a problem with (a) one and (b) four final states,
based on the structure presented in Figure 5.

(a) (b)

(c) (d)

Figure 9. Heuristic defined for a problem with (a) two, (b) four, (c) five and (d)
twenty-five final states, in an enviromnent without any walls.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.34

35

was to be calculated for every episode, it would be hard to overcome a

bad heuristic).

For comparison purposes, the same experiments were run with the

Q–Learning algorithm. The parameters for the next three experiments

(using Q–Learning and HAQL) were: learning rate α = 0.1, γ = 0.99,

exploration rate 0.1. Reinforcements were 10 units reward for reaching

the goal state and −1 unit punishment for every action execution.

6.2.1. Robotic Navigation in an Unknown Environment

In this experiment, a randomly positioned robot must learn a policy

that leads it to the goal in an unknown environment. For this task

we carried out a comparison between Q–Learning and HAQL using the

method “Heuristic from Exploration” for accelerating learning from the

10th learning episode (defined empirically).

From the first to the ninth learning episode, HAQL extracts the do-

main structure, with no use of heuristics. Thus, it behaves similarly to

Q–Learning, but with a mechanism for structure extraction operating

in parallel. At the end of the ninth episode, the heuristic is built up

using Heuristic Backpropagation, and the values of H(st, at) are defined

from Equation 12.

The 10th episode was chosen for initiating the acceleration process,

thus allowing some prior exploration. The likelihood of finding a good

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.35

36

heuristic is increased because the environment is small and the robot

is repositioned at a random position at the start of each episode.

Results were averaged over 30 training sessions held in nine different

configurations for a 55× 55 positions environment – a room with walls

and hallways – as shown in Figure 10. In this experiment, the goal is

located in the upper left corner.

Results in Figure 11 present the average of all 270 training sessions

(30 sessions for each of the 9 configurations). It can be seen that whilst

Q–Learning keeps on looking for a best action policy, HAQL starts

using an optimal policy immediately after acceleration, executing the

minimum number of steps to reach the goal after the 10th episode.

The Student T -test (Spiegel, 1975) was used to validate the hypoth-

esis that HAQL actually accelerates learning. The absolute value of

T was calculated for each episode using the same data presented in

Figure 11. Figure 12 shows that from the tenth iteration onwards Q-

learning and HAQL have remarkably distinct behavior (with a superior

performance by the latter), with a significance level of 0.01% (that

is, if the absolute value of T is greater than the 0.01% bound, the

performance is statistically different).

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.36

37

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Nine different configurations of a room with walls (the white lines). The
goal is located in one of the corners.

6.2.2. Robotic Navigation in a Modified Environment

The heuristic created by the “Heuristic from Exploration” method does

not always correspond to an optimal policy. The environment map

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.37

38

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20

S
te

ps

Episodes

Q−Learning
HAQL

10

100

1000

10000

100000

0 5 10 15 20

S
te

ps

Episodes

Q−Learning
HAQL

Figure 11. Learning results for acceleration in an unknown environment, at the end
of the 10th episode, using “Heuristic from Exploration”. (Number of steps to reach
the goal x episode number, with error bars. Lower in monolog.)

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.38

39

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20

| T
 |

Episodes

| T |
0,01% upper bound

Figure 12. Results of the Student T -test for an unknown environment.

sketch can be far from perfect, and some actions pointed as adequate

by the heuristic may not be. For instance, if the structure extraction

process fails to completely determine a wall, the heuristic can force the

robot to keep trying to move to an invalid position.

Similarly to the experiment described in the last section, here a robot

must learn how to reach a goal once it is placed in a random position of

an unknown environment. However, at the end of the ninth iteration a

small modification of the environment is artificially produced. Our aim

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.39

40

is to verify how HAQL performs when such modifications occur, thus

simulating a heuristic that is not completely adequate.

Between the first and the ninth episode, HAQL simply extracts the

environment structure with no use of a heuristic. At the end of the ninth

episode (and therefore coincidentally with the environment modifica-

tion), the heuristic is designed using the “Heuristic backpropagation”,

method, and the values of H(st, at) are defined from Equation 12.

From the 10th episode onwards this heuristic is then used to accelerate

learning.

For this experiment a single environment configuration with 55×55

positions was used, as shown in Figure 13. The goal is located in the

upper left corner. Figure 13-a shows the environment up to the end of

the ninth episode. Notice that there are hallways to the left and right of

the horizontal wall. At the start of the tenth episode, the right hallway

is closed, as can be seen in Figure 13-b.

The heuristic generated by the method “Heuristic from Exploration”

for this problem is shown in Figure 14-a. Notice that is very similar to

the optimal policy for the environment with closed hallway in the right

horizontal wall (Figure 14-b).

Figure 15 presents results for HAQL with the heuristic created for

the environment with an incomplete wall (averaged over 30 training

sessions). At the moment of the start of the acceleration process, which

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.40

41

(a) Environment up to the end of
the ninth episode

(b) Environment from the tenth
episode onwards

Figure 13. (a) The environment used for defining the heuristic and (b) the
environment where the heuristic is used.

is the same moment that the environment is modified, a worsening of

performance occurs, but acceleration begins as soon as the agent learns

to ignore the heuristics in the states they are not effective.

The result of the Student T -test for the data presented in Figure 15

can be seen in Figure 16. Notice that from the 60th iteration onward the

majority of the results is significantly distinct due to the acceleration

process in HAQL, with a confidence level of at least 95%.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.41

42

(a) The heuristic extracted (b) The optimal policy

Figure 14. (a) The heuristic extracted from the environment of Figure 13-a and (b)
the optimal policy for the environment of Figure 13-b. (55 x 55 cells.)

6.2.3. Robotic Navigation with Goal Repositioning

The goal of this experiment is to compare how the Q–Learning algo-

rithm and the HAQL algorithm behave when the goal is repositioned

in an advanced stage of the learning process.

Once more HAQL initially behaves as Q–Learning, however with

simultaneous execution of the structure extraction algorithm. At the

end of the 4999th episode (empirically defined as an advanced stage

of the learning process) the goal is repositioned from the upper right

corner to the lower left corner.

As a result, both algorithms have to find the new goal position, but

as both are following the previously learned policy, there is performance

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.42

43

0

10000

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40 50 60 70 80 90

S
te

ps

Episodes

Q−Learning
HAQL

−50000

0

50000

100000

150000

200000

0 5 10 15 20 25 30 35 40

S
te

ps

Episodes

Q−Learning
HAQL

Figure 15. Learning results for acceleration in a modified environment at the end
of the tenth episode, using “Heuristic from Exploration”. (Number of steps to reach
the goal x episode number. Lower with error bars.)

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.43

44

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

| T
 |

Episodes

| T |
5% upper bound

Figure 16. Results of the Student T -test for acceleration at the tenth iteration in a
modified environment.

degradation and new requirements for execution of a large number of

steps to reach the new goal position.

As soon as the HAQL-controlled robot reaches the goal (at the end of

the 5000th episode), the heuristic to be used is designed using “Heuristic

Backpropagation” from the (not modified) environment structure and

the new goal position, and the H(st, at) values are defined. This heuris-

tic is then used from the 5001st episode, resulting in better performance

with respect to Q–Learning, as shown in Figure 17.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.44

45

As expected, HAQL has performance similar to Q–Learning up to

the 5000th episode. At this stage, both Q–Learning and HAQL need

around 1 million steps to reach the new goal position.

After goal repositioning, while Q–Learning needs to relearn the whole

policy, HAQL always performs the minimum number of steps required

for reaching the goal. Figure 17 also shows that the deviation in each

episode is small due to the fact that the agent is positioned in different

initial states for each training session.

The Student T -test was used to statistically validate the results.

The absolute value of T was calculated for each episode using the same

data presented in Figure 17. The results are shown in Figure 18. From

the 5001st iteration results are significantly different, with a level of

confidence of more than 99%.

6.2.4. Discussion

This section presented a comparison between Q–Learning and HAQL

in an autonomous mobile robot domain. It was verified that the use of

heuristics by HAQL accelerates learning through the use of information

acquired during the learning process.

Very often, slight structural modifications in the domain causes

havoc in the problem solving process by initializing a learned policy and

requiring complete relearning. Subsections 6.2.2 and 6.2.3 show that

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.45

46

10

100

1000

10000

100000

1e+06

1e+07

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
te

ps

Episodes

HAQL
Q−Learning

10

100

1000

10000

100000

1e+06

1e+07

4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040

S
te

ps

Episodes

Q−Learning
HAQL

Figure 17. Learning results for goal repositioning in the 5000th episode, using
“Heuristic from Exploration” in HAQL. (Number of steps to reach the goal x episode
number, in monolog scale in the upper figure, with error bars in the lower figure.)

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.46

47

0

5

10

15

20

25

30

35

40

45

50

4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040

| T
 |

Episodes

| T |
0,01% upper bound

Figure 18. Results of the Student T -test for goal repositioning in monolog.

HAQL permits reuse of knowledge acquired during the learning process.

Reuse is carried out in a very simple manner, in the policy itself and not

in the value function estimate (Drummond, 2002). Another interesting

feature of HAQL is that even if the heuristic is not completely adequate,

performance enhancement can take place (as shown in subsection 6.2.2)

due the partial correctness of the heuristic.

6.3. Simulation of a real robot

The objective of this section is to verify the performance of Heuristically

Accelerated Q–Learning in a navigation problem for a simulated mobile

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.47

48

robot, with a more complex dynamics than a grid world, operating in

a non-deterministic environment and subject to positioning errors.

The chosen platform is the Saphira 8.0 simulator (Konolige and

Myers, 1996) controlling a Pioneer 2DX mobile robot. Its simulation

module incorporates error models that are very close in behavior to

those of the real sensors – sonars and encoders – in such a way that if

a software routine operates in the simulator it is very likely that it will

be also adequate for a real implementation.

Saphira uses a client-server architecture. The server module uses

a global map based on a reference coordinate system, accessible only

to the simulator, which represents the robot environment. The client

module controls the robot and uses a local map on coordinates centered

on the robot.

The reference coordinate system is a 2-D cartesian system. If any

path is initiated from a known position with a known velocity and

movement direction are accurately measured, the robot state (or pose)

can be defined by integrating measurements of wheel turns in a process

known as dead-reckoning. Unfortunately, dead-reckoning is prone to

cumulative errors due to wheel slippage, surface irregularities and mea-

surement errors. Thus, in realistic situations, techniques that combine

information from an action model and from sensors are required for

reducing the localization error.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.48

49

For the experiment reported in this section (and in contrast with

the experiments on grid worlds) the robot state was determined from

local sensor and action models for state estimation based on belief

updating through the Monte Carlo localization technique (Fox et al,

1999; Sebastian Thrun et al., 2001). Determination of a global state

from local sources of information is actually a basic competence for a

mobile robot.

Figure 19 shows the Saphira 8.0 simulation environment. The upper

image corresponds to the client, which controls the mobile robot. The

small squares around the robot result from the sonar sensor readings,

and the points correspond to the particles (state candidates) used for

Monte Carlo localization. The arrow indicates the likeliest robot orien-

tation. The lower image shows the simulator screen, presenting the real

pose of the robot. Figure 20 is a detailed view of the particles used for

Monte Carlo localization.

The environment is a simulated 10 × 10 meters square, discretized

as a grid of 20 × 20 cells (the length of each cell — 0.5 meters —

corresponds approximately to the diameter of the robot). The robot

orientation was partitioned in 16 discrete values, each corresponding to

a 0.35 radians sector. Thus, the set of discretized state variables (x, y,

θ) used for learning is a coarse representation of the robot real state.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.49

50

Figure 19. The Saphira 8.0 simulation platform. The upper figure shows the client
screen (with the robot position in the reference plane). The lower figure is the
simulator screen (showing the real position of the robot).

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.50

51

Figure 20. Monte Carlo localization: points indicate the position of particles, each
one defining a possible location of the robot. State uncertainty is lower in the upper
image than in the lower images.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.51

52

Four actions were defined as executable by the robot: move ahead or

backwards (a distance corresponding to the robot diameter) and turn

0.35 radians either clockwise or anticlockwise.

In this domain, we made a comparison between Q–Learning and

HAQL using the “Heuristic from Exploration” method to accelerate

learning from the 5th episode onwards. The environment can be seen

in the lower part of Figure 19.

To extract information about the environment structure we used the

“Structure from Exploration” method: every time the robot visits a cell,

a frequency counter for that cell is incremented. At the end of the fifth

iteration, this computation is thresholded, resulting in a environment

map sketch that is used to crete the heuristic via Heuristic Backprop-

agation. Figure 21 shows one of the created map sketches. As can be

seen, the map is not homomorphic with respect to the environment,

resulting in a heuristic which does not indicate the optimal policy.

Furthermore, the created heuristic (presented in Figure 22) drives the

robot to regions very close to the walls, allowing it to get immobilized.

Parameters for both Q–Learning and HAQL were: learning rate α =

0.1, γ = 0.99 and exploration rate of 10%. The Monte Carlo localization

algorithm operated over a set of 10, 000 particles. Reinforcements were:

1000 for reaching the goal state and −10 for any executed action. The

robot starts each training episode from a random pose, and the goal

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.52

53

(a) Number of visits (b) Map

Figure 21. Number of visits (lighter tones indicate more visits) and map sketch
created using the method “Structure from Exploration” for the Saphira environment.

Figure 22. The heuristic created from the map sketch presented in Figure 21.

corresponds to a region in the upper right corner (defined as the region

9250mm ≤ x, y ≤ 9750mm).

Results averaged over 30 experiments are shown in Figure 23. Note

that, even with the use of Monte Carlo localization, there is large

variation on the results for the Q–Learning algorithm, caused by cumu-

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.53

54

Table III. Results of the Student T -test: heuristic learning acceleration in the
fifth episode — HAQL in the Saphira simulation environment.

Episode Q–Learning HAQL |T | Confidence Level

(Number of steps (Number of steps

to reach the goal) to reach the goal)

5 7902 ± 8685 65 ± 51 4.942 0.01%

6 1010 8 ± 10398 55 ± 43 5.295 0.01%

7 8184 ± 12190 72 ± 61 3.644 0.02%

8 8941 ± 8367 75 ± 71 5.803 0.01%

9 8747 ± 9484 63 ± 55 5.015 0.01%

lative localization errors derived from the intensive exploration of the

environment. This variation can also be seen in the data presented on

the 2nd column of Table III. As the number of training steps is greatly

reduced by using the heuristic, the cumulative localization error and the

variation is much lower for HAQL (Table III, 3rd column). The Student

T -test on this experiment (Table III, 4th column) shows that from the

fifth iteration results are significantly distinct, with a significance level

close to 0.01% (Table III, 5th column).

Each 10-episode training experiment took approximately 24 hours

for completion using Q–Learning and an average of 1 minute for HAQL.

Finally, Figure 24 shows the learned paths followed by the robot

using Q–Learning (upper) and HAQL (lower). The paths are a result of

the fifth training episode for both algorithms (therefore, with a heuristic

actuation on HAQL). The robot was released from the bottom left cell

and was required to reach the goal located in the top right corner.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.54

55

−5000

0

5000

10000

15000

20000

25000

0 2 4 6 8 10

S
te

ps

Episodes

Q−Learning
HAQL

1

10

100

1000

10000

100000

0 2 4 6 8 10

S
te

ps

Episodes

Q−Learning
HAQL

Figure 23. Results of heuristic learning acceleration in the fifth episode — HAQL in
the Saphira simulation environment. (Number of steps to reach the goal x episode
number.)

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.55

56

Note that the exploratory nature of Q–Learning produced random-like

walks, generating 12081 learning steps for reaching the goal. HAQL

produced only 86 steps for reaching the goal. Clearly, the role of the

heuristic is to limit exploration.

7. Conclusions and Future Work

We have proposed a general formulation for reinforcement learning al-

gorithms – HAL – that combines on-line policy learning with heuristic

functions for selecting promising actions during the learning process.

This way, heuristics can guide exploration of the state-action space so

that the rate of convergence of an RL algorithm can be increased.

An important characteristic of HAL algorithms is that the heuristic

function can be modified or adapted online, as learning progresses and

new information for enhancement of the heuristic becomes available.

In particular, either prior domain knowledge or previous learning stage

information can be used to accelerate learning. Another important fea-

ture is that the heuristic function is an action policy modifier that does

not interfere with the standard bootstraping update mechanism of RL

algorithms.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.56

57

0

2000

4000

6000

8000

10000

0 2000 4000 6000 8000 10000

Y

X

I

G

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

Y

X

I

G

Figure 24. Paths followed by the robot using Q–Learning (upper) and HAQL (lower)
in the Saphira 8.0 simulation environment, after the 5th training episode.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.57

58

We also have contributed a new learning algorithm, Heuristically Ac-

celerated Q-learning (HAQL), which incorporates heuristics for action

selection to the Q-Learning algorithm. A series of empirical evaluation

of HAQL in a commercial simulator for the robot navigation domain

were carried out. Experimental results showed that the performance of

the learning algorithm can be improved even using very simple heuristic

functions.

The experiments reported in this work were carried out in static

environments. Despite the small number of experiments conducted in a

non-deterministic environment (Section 6.3), we believe that the frame-

work proposed applies to stochastic problems as well as to deterministic

ones.

Another important topic to be investigated in future works is the

use of generalizations of the value function space used to generate the

heuristic function.

Future works also include investigations on how to accelerate re-

inforcement learning by using heuristics transfer from related tasks.

Without such transfer, even if two tasks are very similar at some

abstract level, an extensive re-learning effort is required. However, it

seems more promising to transfer parts of previously learned solutions

rather than a single complete solution. These solution pieces represent

knowledge (built in heuristics) about how to solve certain subtasks.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.58

59

The same idea can be extended to multiagent learning, so that knowl-

edge can be exchanged among learning agents in order to improve the

multiagent performance.

Acknowledgements

This research was conducted under the CAPES/GRICES Project Multi-

Bot(Grant no. 099/03). Carlos H. C. Ribeiro is grateful to CNPq (Grant

no. 301228/97-3-NV).

References

Banerjee, B.; Sen, S. and Peng, J. Fast concurrent reinforcement learners. In: Procs.

of the International Joint Conference on Artificial Intelligence (IJCAI’2001),

pp. 825–830, 2001.

Bertsekas, D. P. Dynamic Programming: Deterministic and Stochastic Models .

Prentice-Hall, Upper Saddle River, NJ, 1987.

Bertsekas, D. P. Dynamic Programming and Optimal Control, Vol. 1. Athena

Scientific, Belmont, MA, 1995.

Bianchi, R. A. C. Using Heuristics to accelerate Reinforcement Learning algorithms

(in portuguese). PhD Thesis, University of São Paulo, 2004.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.59

60

Bonabeau, E.; Dorigo, M. and Theraulaz, G. Inspiration for optimization from social

insect behaviour. Nature 406, 2000.

Butz, M. V. State Value Learning with an Anticipatory Learning Classifier System

in a Markov Decision Process. Technical Report 2002018 at the Illinois Genetic

Algorithms Laboratory, 2002.

Drummond, C. Accelerating Reinforcement Learning by Composing Solutions of

Automatically Identified Subtasks. Journal of Artificial Intelligence Research

16, 2002, pp. 59–104.

Elfes, A. Using Occupancy Grids for Mobile Robot Perception and Navigation.

Computer 22, 1989, pp. 46–57.

Foster, D. and Dayan, P. Structure in the Space of Value Functions. Machine

Learning 49, 2002, pp. 325–346.

Fox, D; Burgard, W. and Thrun, S. Markov localization for mobile robots in dynamic

environments. Journal of Artificial Intelligence Research 11, 1999, pp. 391–427.

Hart, P. E., Nilsson, N. J. and Raphael, B. A formal basis for the heuristic deter-

mination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics 4, 1968, pp. 100–107.

Kaelbling, L. P.; Littman, M. L. and Moore, A. W. Reinforcement Learning: A

survey. Journal of Artificial Intelligence Research 4, 1996, pp. 237–285.

Karlin, S., and H. M. Taylor. A First Course in Stochastic Processes. Academic

Press, 1975.

Konolige, K. Improved occupancy grids for map building. Autonomous Robots 4,

1997, pp. 351–367.

Konolige, K. and Myers, K. The Saphira Architecture for Autonomous Mobile

Robots. In: AI-based Mobile Robots: Case studies of successful robot systems,

MIT Press, Cambridge, MA, 1996.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.60

61

Littman, M. L. Markov games as a framework for multi-agent reinforcement learning.

In: Proceedings of the Eleventh International Conference on Machine Learning

(ICML’94) (1994), Morgan Kaufmann, pp. 157–163.

Littman, M. L., and C. Szepesvári A generalized reinforcement learning model:

Convergence and applications. In: Procs. of the Thirteenth International Conf.

on Machine Learning (ICML’96) (1996), pp. 310–318.

Mitchell, T. Machine Learning. McGraw Hill, New York, 1997.

Moore, A. W. Variable Resolution Dynamic Programming: Efficiently Learning

Action Maps in Multivariate Real-valued State-spaces. In: Proceedings of the

Eight International Conference on Machine Learning (ICML’91) (1991), Morgan

Kaufmann, pp. 57–69.

Moore, A. W. and Atkeson, C. G. Prioritized Sweeping: Reinforcement Learning

With Less Data and Less Time. Machine Learning 13, 1993, pp. 103–130.

Peng, J. and Williams, R. J. Efficient Learning and Planning within the Dyna

framework. Adaptive Behavior 1, 1993, pp. 437–454.

Puterman, M. L. Markovian Decision Problems. John Wiley, 1994.

Rummery, G. and Niranjan, M. On-line Q-learning using connectionist sys-

tems. Technical Report CUED/F-INFENG/TR 166, Cambridge University

Engineering Department, 1994.

Russell, S. and Norvig, P. Artificial Intelligence: a modern approach. Prentice Hall,

2nd edition, 2002.

Thrun, S.; Fox, D. Burgard, W. and Dellaert, F. Robust Monte Carlo localization

for mobile robots. Artificial Intelligence 128, 2001, pp. 99–141.

Singh, S., Jaakkola, T. and Jordan, M. Reinforcement Learning with Soft State

Aggregation. Advances in Neural Information Processing Systems 7, pp. 361–368,

1995.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.61

62

Spiegel, M. R. Probability and Statistics. McGraw-Hill, New York, 1975.

Sutton, R. S. Learning to Predict by the Methods of Temporal Differences. Machine

Learning 3, 1988, pp. 9–44.

Sutton, R. S. Integrated architectures for learning, planning and reacting based

on approximating dynamic programming. Proceedings of the 7th International

Conference on Machine Learning, Austin, TX, 1990.

Sutton, R. S. Generalization in Reinforcement Learning: Successful Examples Using

Sparse Coarse Coding. Advances in Neural Information Processing Systems 8,

1996, pp. 1038–1044.

Sutton, R. S. and Barto, A. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA, 1998.

Szepesvári, C. Static and Dynamic Aspects of Optimal Sequential Decision Making.

PhD thesis, Jozsef Attila University, Szeged, Hungary.

Szepesvári, C., and Littman, M. Generalized markov decision processes: Dynamic-

programming and reinforcement-learning algorithms. CS-96-11, Brown Univer-

sity, Department of Computer Science, Brown University, Providence, Rhode

Island 02912, 1996.

Tsitsiklis, J. and Roy, B. V. Feature-based Methods for Large Scale Dynamic

Programming. Machine Learning 22, 1996, pp. 59–64.

Tesauro, G. Temporal Difference Learning and TD-Gammon. Communications of

the ACM 38, 1995, pp. 58–67.

Watkins, C. J. C. H. Learning from Delayed Rewards. PhD thesis, University of

Cambridge, 1989.

JournalOfHeuristics-HAQL.tex; 28/04/2006; 15:12; p.62

