
Heuristic Reinforcement Learning applied to

RoboCup Simulation Agents

Luiz A. Celiberto Jr.1,2, Carlos H. C. Ribeiro2, Anna Helena Reali Costa3, and
Reinaldo A. C. Bianchi1

1 Centro Universitário da FEI
Av. Humberto de Alencar Castelo Branco, 3972.

09850-901 – São Bernardo do Campo – SP, Brazil.

2 Instituto Tecnológico de Aeronáutica
Praça Mal. Eduardo Gomes, 50.

12228-900 – São José dos Campos – SP, Brazil.

3 Laboratório de Técnicas Inteligentes
Escola Politécnica da Universidade de São Paulo

Av. Prof. Luciano Gualberto, trav. 3, 158. 05508-900 – São Paulo – SP, Brazil.

celibertojr@uol.com.br, carlos@ita.br, anna.reali@poli.usp.br,

rbianchi@fei.edu.br

Abstract. This paper describes the design and implementation of robotic
agents for the RoboCup Simulation 2D category that learns using a re-
cently proposed Heuristic Reinforcement Learning algorithm, the Heuris-
tically Accelerated Q–Learning (HAQL). This algorithm allows the use
of heuristics to speed up the well-known Reinforcement Learning algo-
rithm Q–Learning. A heuristic function that influences the choice of the
actions characterizes the HAQL algorithm. A set of empirical evalua-
tions was conducted in the RoboCup 2D Simulator, and experimental
results show that even very simple heuristics enhances significantly the
performance of the agents.
Keywords: Reinforcement Learning, Cognitive Robotics, RoboCup Sim-
ulation 2D.

1 Introduction

Reinforcement Learning (RL) techniques have been attracting a great deal of
attention in the context of multiagent robotic systems. The reasons frequently
cited for such attractiveness are: the existence of strong theoretical guarantees
on convergence [9], they are easy to use, and they provide model-free learning
of adequate control strategies. Besides that, they also have been successfully
applied to solve a wide variety of control and planning problems.

However, one of the main problems with RL algorithms is that they typically
suffer from very slow learning rates, requiring a huge number of iterations to
converge to a good solution. This problem becomes worse in tasks with high
dimensional or continuous state spaces and when the system is given sparse

rewards. One of the reasons for the slow learning rates is that most RL algorithms
assumes that neither an analytical model nor a sampling model of the problem
is available a priori. However, in some cases, there is domain knowledge that
could be used to speed up the learning process.

As a way to add domain knowledge to help in the solution of the RL problem,
a recently proposed Heuristic Reinforcement Learning algorithm – the Heuris-
tically Accelerated Q–Learning (HAQL) [1] – uses a heuristic function that in-
fluences the choice of the action to speed up the well-known RL algorithm Q–
Learning. This paper investigates the use of HAQL to speed up the learning
process of teams of mobile autonomous robotic agents acting in a concurrent
multiagent environment, the RoboCup 2D Simulator. It is organized as follows:
section 2 describes the Q–learning algorithm. Section 3 describes the HAQL and
its formalization using a heuristic function. Section 4 describes the robotic soc-
cer domain used in the experiments, presents the experiments performed, and
shows the results obtained. Finally, Section 5 summarizes some important points
learned from this research and outlines future work.

2 Reinforcement Learning and the Q–learning algorithm

Consider an autonomous agent interacting with its environment via perception
and action. On each interaction step the agent senses the current state s of the
environment, and chooses an action a to perform. The action a alters the state
s of the environment, and a scalar reinforcement signal r (a reward or penalty)
is provided to the agent to indicate the desirability of the resulting state.

The goal of the agent in a RL problem is to learn an action policy that
maximizes the expected long term sum of values of the reinforcement signal,
from any starting state. A policy π : S → A is some function that tells the agent
which actions should be chosen, under which circumstances [5]. This problem
can be formulated as a discrete time, finite state, finite action Markov Decision
Process (MDP). The learner’s environment can be modeled [6] by a 4-tuple
〈S,A, T ,R〉, where:

– S: is a finite set of states.

– A: is a finite set of actions that the agent can perform.
– T : S×A → Π(S): is a state transition function, where Π(S) is a probability

distribution over S. T (s, a, s′) represents the probability of moving from state
s to s′ by performing action a.

– R : S ×A → ℜ: is a scalar reward function.

The task of a RL agent is to learn an optimal policy π∗ : S → A that maps
the current state s into an optimal action(s) a to be performed in s. In RL, the
policy π should be learned through trial-and-error interactions of the agent with
its environment, that is, the RL learner must explicitly explore its environment.

The Q–learning algorithm was proposed by Watkins [10] as a strategy to
learn an optimal policy π∗ when the model (T and R) is not known in advance.

Let Q∗(s, a) be the reward received upon performing action a in state s, plus
the discounted value of following the optimal policy thereafter:

Q∗(s, a) ≡ R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′). (1)

The optimal policy π∗ is π∗ ≡ argmaxa Q∗(s, a). Rewriting Q∗(s, a) in a recur-
sive form:

Q∗(s, a) ≡ R(s, a) + γ
∑

s′∈S

T (s, a, s′)max
a′

Q∗(s′, a′). (2)

Let Q̂ be the learner’s estimate of Q∗(s, a). The Q–learning algorithm itera-
tively approximates Q̂, i.e., the Q̂ values will converge with probability 1 to Q∗,
provided the system can be modeled as a MDP, the reward function is bounded
(∃c ∈ R; (∀s, a), |R(s, a)| < c), and actions are chosen so that every state-action
pair is visited an infinite number of times. The Q learning update rule is:

Q̂(s, a)← Q̂(s, a) + α
[

r + γ max
a′

Q̂(s′, a′)− Q̂(s, a)
]

, (3)

where s is the current state; a is the action performed in s; r is the reward
received; s′ is the new state; γ is the discount factor (0 ≤ γ < 1); α is the
learning rate.

An interesting property of Q–learning is that, although the exploration-
exploitation tradeoff must be addressed, the Q̂ values will converge to Q∗, inde-
pendently of the exploration strategy employed (provided all state-action pairs
are visited often enough) [6].

3 The Heuristically Accelerated Q–Learning Algorithm

The Heuristically Accelerated Q–Learning algorithm [1] was proposed as a way of
solving the RL problem which makes explicit use of a heuristic function H : S ×
A → ℜ to influence the choice of actions during the learning process. Ht(st, at)
defines the heuristic, which indicates the importance of performing the action at

when in state st.
The heuristic function is strongly associated with the policy: every heuristic

indicates that an action must be taken regardless of others. This way, it can be
said that the heuristic function defines a “Heuristic Policy”, that is, a tentative
policy used to accelerate the learning process. It appears in the context of this
paper as a way to use the knowledge about the policy of an agent to accelerate
the learning process. This knowledge can be derived directly from the domain
(prior knowledge) or from existing clues in the learning process itself.

The heuristic function is used only in the action choice rule, which defines
which action at must be executed when the agent is in state st. The action choice
rule used in the HAQL is a modification of the standard ǫ − Greedy rule used

in Q–learning, but with the heuristic function included:

π(st) =

{

arg maxat

[

Q̂(st, at) + ξHt(st, at)
]

if q ≤ p,

arandom otherwise,
(4)

where:

– H : S ×A → ℜ: is the heuristic function, which influences the action choice.
The subscript t indicates that it can be non-stationary.

– ξ: is a real variable used to weight the influence of the heuristic function.
– q is a random value with uniform probability in [0,1] and p (0 ≤ p ≤ 1) is the

parameter which defines the exploration/exploitation trade-off: the greater
the value of p, the smaller is the probability of a random choice.

– arandom is a random action selected among the possible actions in state st.

As a general rule, the value of the heuristic Ht(st, at) used in the HAQL
must be higher than the variation among the Q̂(st, at) for a similar st ∈ S, so it
can influence the choice of actions, and it must be as low as possible in order to
minimize the error. It can be defined as:

H(st, at) =

{

maxa Q̂(st, a)− Q̂(st, at) + η if at = πH(st),

0 otherwise.
(5)

where η is a small real value and πH(st) is the action suggested by the heuristic.
As the heuristic is used only in the choice of the action to be taken, the

proposed algorithm is different from the original Q–learning only in the way
exploration is carried out. The RL algorithm operation is not modified (i.e.,
updates of the function Q are as in Q–learning), this proposal allows that many
of the conclusions obtained for Q–learning to remain valid for HAQL [1].

The use of a heuristic function made by HAQL explores an important char-
acteristic of some RL algorithms: the free choice of training actions. The conse-
quence of this is that a suitable heuristic speeds up the learning process, and if
the heuristic is not suitable, the result is a delay which does not stop the system
from converging to a optimal value.

4 Experiment in the RoboCup 2D Simulation domain

One experiment was carried out using the RoboCup 2D Soccer Server [7]: the
implementation of a defense team, with a goalkeeper and a first defender (full-
back) that have to learn how to minimize the number of goals scored by the
opponent. In this experiment, the implemented team have to learn while playing
against a team composed of two striker agents from the UvA Trilearn 2001 Team
[2].

The space state of the learning agents is composed by its position in a discrete
grid with N x M positions the agent can occupy, the position of the ball in the
same grid and the direction the agent is facing. This grid is different for the

Fig. 1. Discrete grids that compose the space state of the goalkeeper (left) and the
defender (right).

goalkeeper and the defender: each agent has a different area where it can move,
which they cannot leave. These grids, shown in figure 1, are partially overlapping,
allowing both agents to work together in some situations. The direction that the
agent can be facing is also discrete, and reduced to four: north, south, east or
west.

The defender can execute six actions: turnBodyToObject, that keeps the
agent at the same position, but always facing the ball; interceptBall, that moves
the agent in the direction of the ball; driveBallFoward, that allows the agent
to move with the ball; directPass, that execute a pass to the goalkeeper; kick-
Ball, that kick the ball away from the goal and; markOpponent, that moves the
defender close to one of the opponents.

The goalkeeper can also perform six actions: turnBodyToObject, intercept-
Ball, driveBallForward, kickBall, which are the same actions that the defender
can execute, and two specific actions: holdBall, that holds the ball and move-
ToDefensePosition, that moves the agent to a position between the ball and the
goal.

All these actions are implemented using pre-defined C++ methods defined
in the BasicPlayer class of the UvA Trilearn 2001 Team. “The BasicPlayer class
contains all the necessary information for performing the agents individual skills
such as intercepting the ball or kicking the ball to a desired position on the field”
[2, p. 50].

The reinforcement given to the agents were inspired on the definitions of
rewards presented in [3], and are different for the agents. For the goalkeeper, the
rewards consists of: ball caught, kicked or driven by goalie = 25; ball with any
opponent player = -25; goal scored by the opponent = -100. For the defender,
the rewards are: ball kicked or passed to the goalie = 15; ball with any opponent
player = -10; goal scored by the opponent = -15.

The heuristic policy used for the goalkeeper and the defender is described by
two rules: if the agent is not near the ball, run in the direction of the ball, and;
if the agent is close to the ball, do something with it. Note that the heuristic

policy is very simple, leaving the task of learning what to do with the ball and
how to deviate from the opponent to the learning process. The values associated
with the heuristic function are defined using equation 5, with the value of η set
to 200. This value is computed only once, at the beginning of the game. In all
the following episodes, the value of the heuristic is maintained fixed, allowing
the learning process to overcome bad indications.

In order to evaluate the performance of the HAQL algorithm, this experiment
was performed with teams of agents that learns using the Q–learning algorithm,
the HAQL algorithm and using agents that acts based only on a heuristic rule
(without learning capabilities). The results presented are based on the average of
10 training sessions for each algorithm. Each session is composed of 100 episodes
consisting of matches taking 3000 cycles each. During the simulation, when a
teams scores a goal all agents are transferred back to a pre-defined start position.

The parameters used in the experiments were the same for the two algo-
rithms, Q–learning and HAQL: the learning rate is α = 1.25, the exploration/
exploitation rate p = 0.05 and the discount factor γ = 0.9. Values in the Q
table were randomly initiated, with 0 ≤ Q(s, a, o) ≤ 1. The experiments were
programmed in C++ and executed in a Pentium IV 2.8GHz, with 1GB of RAM
on a Linux platform.

Figure 2 shows the learning curves for both algorithms when the agents learn
how to play against a team composed of two strikers from the UvA Trilearn
Team 2001 [2]. It presents the average goals scored by the opponent team in
each episode. It is possible to verify that Q–learning has worse performance
than HAQL at the initial learning phase, and that as the matches proceed, the
performance of both algorithms become more similar, as expected.

Another important information contained in this figure is the number of goals
scored against a defense team that uses only the heuristic policy to select which
action must be done, at a given time. As it can be seen, this team will receive
an average of 24 goals in each episode, performing worst than any of the other
two algorithms. This shows that the heuristic policy by itself is not a complete
solution to the problem, but only an indication of some actions that should be
taken, at certain times.

Student’s t–test [8] was used to verify the hypothesis that the use of heuristics
speeds up the learning process. For the experiments described in this section,
the value of the module of T was computed for each episode using the same
data presented in figure 2. The result, presented in figure 3, shows that HAQL
performs clearly better than Q–learning until the 60th episode, with a level of
confidence greater than 95%. After the 60th episode, the results became closer.
But it can be seen that HAQL still performs better than Q–learning.

Finally, table 1 shows the cumulative number of goals made by the strikers
at the end of 100 episodes (averaged for 10 training sessions). What stands out
in this tables is that, due to a lower number of goals scored against the HAQL
at the beginning of the learning process, this algorithm receives significanly less
goals than the Q–learning algoritm (with a statistical confidence > 99.9%).

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

G
oa

ls

Episodes

Q−Learning
HAQL

Heuristics

Fig. 2. Average goals scored against the defense agents using the Q–Learning and the
HAQL algorithms, for training sessions against two UvA Trilearn attack agents.

 0

 5

 10

 15

 20

 0 20 40 60 80 100

T
 V

al
ue

Episodes

T Value
95% Confidence Level

Fig. 3. Results from Student’s t test between Q–learning and HAQL algorithms, for
defense agents training against two UvA Trilearn attack agents.

5 Conclusion and Future Works

This paper presented the use of the Heuristically Accelerated Q–Learning (HAQL)
algorithm to speed up the learning process of teams of mobile autonomous
robotic agents acting in the RoboCup 2D Simulator.

The experimental results obtained in this domain showed that agents using
the HAQL algorithm learned faster than ones using the Q–learning, when they
were trained against the same opponent. These results are strong indications that
the performance of the learning algorithm can be improved using very simple
heuristic functions.

Due to the fact that the reinforcement learning requires a large amount of
training episodes, the HAQL algorithm has been evaluated, so far, only in simu-

Table 1. Cumulative goal the end of 100 episodes (average for all training sessions).

Algorithm Cumulative goal score

Q–leaning (1177 ± 51)
HAQL (836 ± 10)

lated domains. Among the actions that need to be taken for a better evaluation
of this algorithm, the more important ones include:

– The development of teams composed of agents with more complex space
state representation and with a larger number of players.

– Working on obtaining results in more complex domains, such as RoboCup
3D Simulation and Small Size League robots [4].

– Comparing the use of more convenient heuristics in these domains.
– Validate the HAQL by applying it to other the domains, such as the “car on

the hill” and the “cart-pole”.

References

[1] R. A. C. Bianchi, C. H. C. Ribeiro, and A. H. R. Costa. Heuristically Accelerated
Q-Learning: a new approach to speed up reinforcement learning. Lecture Notes
in Artificial Intelligence, 3171:245–254, 2004.

[2] R. de Boer and J. Kok. The Incremental Development of a Synthetic Multi-Agent
System: The UvA Trilearn 2001 Robotic Soccer Simulation Team. Master’s Thesis,
University of Amsterdam, 2002.

[3] S. Kalyanakrishnan, Y. Liu, and P. Stone. Half field offense in RoboCup soc-
cer: A multiagent reinforcement learning case study. In G. Lakemeyer, E. Sklar,
D. Sorenti, and T. Takahashi, editors, RoboCup-2006: Robot Soccer World Cup
X. Springer Verlag, Berlin, 2007.

[4] H. Kitano, A. Minoro, Y. Kuniyoshi, I. Noda, and E. Osawa. Robocup: A challenge
problem for ai. AI Magazine, 18(1):73–85, 1997.

[5] M. L. Littman and C. Szepesvári. A generalized reinforcement learning model:
Convergence and applications. In Procs. of the Thirteenth International Conf. on
Machine Learning (ICML’96), pages 310–318, 1996.

[6] T. Mitchell. Machine Learning. McGraw Hill, New York, 1997.
[7] I. Noda. Soccer server : a simulator of robocup. In Proceedings of AI symposium

of the Japanese Society for Artificial Intelligence, pages 29–34, 1995.
[8] M. R. Spiegel. Statistics. McGraw-Hill, 1998.
[9] C. Szepesvári and M. L. Littman. Generalized markov decision processes:

Dynamic-programming and reinforcement-learning algorithms. Technical report,
Brown University, Department of Computer Science, Brown University, Provi-
dence, Rhode Island 02912, 1996. CS-96-11.

[10] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, University of
Cambridge, 1989.

