
The VIBRA Multi-Agent Architecture: integrating purposive vision
with deliberative and reactive planning.

Anna H. Reali C. Rillo1 Leliane N. Barros2 Reinaldo A. C. Bianchi2

1 Department of Computer Engineering
2 Laboratory of Integrated Systems

University of São Paulo
Av. Prof. Luciano Gualberto, trav. 3, 158

05508-900 São Paulo SP Brazil
arillo@pcs.usp.br, leliane@lsi.usp.br, rbianchi@lsi.usp.br

Abstract

In the view of the inherent difficulty of solving planning tasks in a dynamic world application, AI researchers
have claimed that running experiments is a good way to accomplish the goal of understanding the built
systems. Experiments can provide: (i) preliminary confirmation of some parts of a reasoning theory, (ii)
suggestions of possible modifications to the theory, to the test bed environment, and to the robotic system
embedded in the environment. In this work we propose a multi-agent vision-based architecture to solve
complex sensor-based planning tasks. We present a test bed implementation, with skills such as vision and
collision avoidance, to run some experiments in the proposed architecture. We demonstrate how the system
can successfully execute complex assembly plans while dealing with unpredictable events and imprecise
information, with no significant cost in run-time efficiency. Another important result from this work is that the
experience on building such robotic system provided some important insights about the vision and planning
areas, suggesting a new interpretation and comparative analysis of those two reasoning theories.

Keywords: purposive vision, agent architecture for planning and execution, deliberative planning, reactive
planning.

1. Introduction

To solve complex problems in a real dynamic
world, an intelligent system must be able to
interact with its environment by gathering
information about its surrounding world through
sensing, processing and transforming it into
different levels of representation. Such processed
information is then used by the system to interact
back with the environment through robot actions
[Fermüller: 93].

The idea of constructing such intelligent system
has been the ultimate goal of the Artificial
Intelligence (AI) area and has led the AI
community to investigate a number of other robot
capabilities, such as: to generate and execute
complex plans; to perform online resource
allocation; to deal with problems as they arise in
real-time (reaction); to reason with incomplete
information and unpredictable events.

In the view of the inherent difficulty of the
problem and the limited results obtained from AI
in well behaved artificial domains, the AI

researchers have claimed that running experiments
is a good way to accomplish the goal of
understanding the built systems. Experiments can
provide: (i) preliminary confirmation of some parts
of a reasoning theory; (ii) suggestions of possible
modifications to the theory, to the test bed
environment, and to the robotic system embedded
in the environment. Moreover, they can suggest a
large number of additional experiments that need
to be conducted to expand and strengthen the
original theory [Hanks et al.:93].

In this work we propose a Multi-Agent
Architecture that integrates visual perception,
planning, reaction and execution to solve real
world problems. We run a number of experiments
using this architecture applied to an assembly test
bed domain.

Another important result from this work is that
the experience on building such robotic system
provided some important insights about vision and
planning areas, suggesting a new interpretation and
comparative analysis of those two reasoning
theories.

The remainder of this paper is structured as
follows. In Section 2 we present the evolution of
the visual perception and planning areas. Section 3
presents the chosen domain application that will
serve as a test bed for our proposed architecture. In
Section 4 we make a brief discussion about how
the choice of a Multi-agent architecture was made.
In Section 5 we introduce VIBRA, a multi-agent
vision-based reactive architecture. In Section 6 we
run some experiments in our test bed depicting the
behavior of the VIBRA system when applied to a
dynamic environment. Finally, in Section 7 we
discuss some important insights acquired in this
work and the comparative analysis between the
vision and planning theories.

2. The evolution of the visual
perception and planning areas

Traditional works on solving complex tasks had

led AI researchers to break the view of an
intelligent system into a set of independent
cognitive modules in order to study them
individually. As illustrated in Figure 1, those basic
modules are: perception, planning, learning, and
execution.

PERCEPTION

LEARNING

PLANNING

EXECUTION

Figure 1: Modular view of an intelligent system.

Within this view, complex problems are solved
by the execution of individual modules that can
exchange information through well defined
interfaces. As we know the supposition of
independent processes brought up enormous
difficulties because of the unexpected interactions
of those parts, as we show bellow for the two
modules: vision and planning.

2.1 The vision evolution

One of the most important perceptual sense is
vision. According to the modularized view of
intelligence, visual perception has to provide an
internal and complete description of the world
scene to all the other modules. Such approach
originated the so called reconstructive or recovery
paradigm [Tarr, Black: 94; Jolion: 94; Marr: 82;
Dean et al.:95]. The recovery vision goal is to
derive, from one or more images of a scene, an
accurate three-dimensional description of the
objects in the world and quantitatively recover its
properties from image cues such as shading,
contours, motion, stereo, color, etc. Thus recovery
emphasizes the study of task-independent visual
abilities carried out by a passive observer [Dean et

al.: 95].
Important results have been achieved with the

recovery paradigm in terms of computational
theories and algorithms dealing with internal
world representations, all of them trying to
establish general purpose methodologies and
representations preserving as much information as
possible. However, the results obtained by
implemented working systems when applied to
real world domains were not satisfactory. In fact,
one important understanding of the recovering
approach is that “vision is an underconstrained
problem, i.e., an image does not contain enough
information for a complete and unambiguous
reconstruction of a 3-D scene” [Marr:82;
Jolion:94]. That means, the traditional generalized
approaches had to be improved: (i) by increasing
run-time efficiency in generating a useful world
model, and (ii) by imposing enough constraints to
the vision problem. This has led to an alternative
approach, called purposive approach
[Aloimonos:94], which embodies the following
features:
• visual systems are active, i.e., they have to

control the image acquisition process,
introducing constraints that facilitate the
recovery of information about the 3D scene
[Aloimonos:94]. Bajcsy [Bajcsy:88]
summarizes this idea as “we do not just see, we
look”.

• a perceptual system has a relationship with the
surrounding world. An active observer, that
wants to reconstruct an accurate and complete
representation of the world, needs a large
amount of computational power. The best way
to implement its relationship with the world is
by the determination, through the vision
system, of what information derived from the
image should be used and what corresponding
representation is needed [Aloimonos:94]. This
depends on the tasks the system has to carry
out, i.e., on its purpose.
This way, according to the purposive approach

to build complex perceptual systems, vision
should not be considered as a self-contained
module, but as an entity containing other
intelligent capabilities, i.e., planning, reasoning
and learning, all of them cooperating to produce a
behavior that solve specific tasks. The intelligence
should not be divided into isolated cognitive
modules, but it should be decomposed in terms of
behaviors [Aloimonos:94]. Figure 2:
Decomposition of a system into behaviors.
illustrates the decomposition where each ring
corresponds to a specific behavior. For example, a
robot that navigates while avoiding collisions
shows a behavior that can involve planning,
perception, execution and learning.

PERCEPTION

LEARNING

PLANNING

EXECUTION

Figure 2: Decomposition of a system into
behaviors.

2.2 The AI planning evolution

From the early days of AI planning, the idea of
dividing the original problem into smaller ones has
shown to be an efficient way to obtain some
important results. This strategy for problem
reduction has been largely explored in the classical
planning area: first with the use of strategies such
as divide-and-conquer and means-ends-analysis
from the very early planning systems; next by
solving a goal at a time and subgoaling from the
partial-order planners; and finally with the goal
decomposition from the HTN planners. Although
those strategies brought up some extra problems

like non-linearity, goal interaction and constraints
inconsistency, they contributed to gradually reduce
the complexity of the classical planning problem
for different classes of domain applications
[Minton et al.: 91; Barret et al.: 94].

The same thing happened in the reactive
planning area where the idea of reducing a
problem came first with a collection of simple,
interacting and dedicated behaviors. The claim of
such systems was that the scalability of the system
to higher cognitive functions could arise from the
organization of several dedicated behaviors
[Brooks: 91]. However, these scalability is
questionable, since most works done with strictly
behavioral robots are not based on complex
sensors and do not go beyond navigation tasks
[Medeiros et al.: 97].

These two planning approaches, the deliberative
and the reactive planning, can be seen as two
independent problem solving methods that, when
combined, can solve more complex problems.
Some works [Firby et al.: 95; Garcia-Alegre et al.:
97; Medeiros et al.: 97; Wooldridge et al.: 95]
have proposed a hybrid architecture to combine
the deliberative approach (containing a symbolic
world model, developing plans and making
decisions), and a reactive one (capable of reacting
to events that occur in the environment without
engaging in complex reasoning). In this way, a
complex system can be built out of many
subsystems, arranged into a hierarchy so that the
higher levels are supposed to process more
abstract information than the lower levels. To
ensure fast responses to important environmental
events, the reactive agents often are assigned to the
lower levels of the hierarchy, meaning that they
have some kind of precedence over the
deliberative agents.

However the existing research experience has
not yet produced an ultimate paradigm for the
distribution and/or coordination of the skills
required for intelligent robotic systems when
acting in the real world. Some of the desirable

features that a distributed planning approach
should have are:
1. the robot actions should be of two types:

reactive actions and actions selected as a result
of a plan generation;

2. the robot should be able to combine at run
time sensing and action activities in order to
create a complex goal oriented behavior;

We propose a Multi-Agent Architecture that
combines both deliberative and reactive planning,
capable of taking advantage of environmental and
task constraints, and yet is flexible enough to
respond to dangerous situations and failed
expectations. An important advantage of this
architecture is that the expected behaviors of the
system are modularized, allowing the design of
different tasks to work in different contexts.

3. The test bed application domain:
an Assembly task

In most real assembly lines a robot previously
locates each part through a vision system that
recognizes and gives information about the
positions of these parts. With the given sensorial
information the robot can start to execute a plan to
satisfy its original Assembly task goal. This task
should be executed continuously in the sense that
new assembly parts can be placed on the table by a
human or other robot. However, the human could
also place a trash object, which can possibly
disturb the task execution. If the vision system
detects parts that do not belong to the assembly
artifact, the robot is supposed to clean the work
area before continuing.

An essential capability of the robot should be to
detect and avoid possible collisions between the
robot arm and a human (or another robot), while it
is executing the cleaning or assembly task. In order
to avoid collisions, both, the cleaning and
assembly tasks can have their execution
interrupted until the work area is free of collision
contingencies.

An application example was implemented in the
LSI Flexible Assembly Cell [Rillo et al.: 92]. In
Figure 3 we show the configuration of the cell that
served as a test bed for our work.

Figure 3: The configuration of the LSI cell used for
the Assembly application domain.

The application consists of: given a number of
parts on a table, mortises and tenons, the goal is to
find the matching pairs in order to join them. The
assembly pairs can have different sizes,
consequently the matching has to be done between
pairs of the same size. While the main task is
being executed, unexpected human interactions
can happen. A human can change the
configuration on the table by adding new parts to
be assembled or some trash objects which cause
the robot to perform the cleaning task.

The key feature of the assembly robot is not so
much its ability to reason about assembly, but
rather its ability to choose timely and effective
actions to cope with an uncertain and changing
environment. This test bed can be characterized as
a complex reactive planning task since it carries
out a number of important features:
• To generate and execute complex plans to

solve specific task goals
The Assembly domain, for instance, is a typical

case for a planning task. Assume that this domain
is represented by a hierarchy of tasks, which
describes how to decompose higher level of tasks
into lower level ones. The lower level tasks

correspond to sensing and action. From the point
of view of reducing the complexity of the problem,
we assume further that to each domain of the
solution, as previously mentioned in the Assembly
domain, corresponds a desired behavior which is
independent of any other behavior whatsoever. To
each desired behavior o hierarchy of tasks is
defined. Therefore, we can partition the solution
into three domains with a task hierarchy assigned
to each, namely the Assembly task, the Cleaning
task and finally the Collision Avoidance task.

Figure 4 illustrates some of the decomposition
tasks from the Assembly domain. The Assembly
task can be decomposed in the sub-tasks: Scan for
free parts, Select pair, Pick-up object, Move object
and Join pair. The subtask Scan for free parts can
be decomposed into: Capture image, Detect
objects and Calculate size and position. Finally,
the Detect objects subtask can be decomposed
into: Recognize mortises and Recognize tenons.

ASSEMBLY

Scan for
free parts

Select
pair

Move
object

Join
pair

Pick-up
object

Scan for
free parts

Capture
image

Detect
objects

Calculate size
and position

Detect
objects

Recognize
mortises

Recognize
tenons

Figure 4: Examples of task decomposition for the
Assembly task.

The difficulty in the execution of this task rests
on possessing adequate image processing and
understanding capabilities, appropriately dealing
with collision avoidance interruptions and human
interactions with the configuration of the work
table. The robot has to cope with goals which have
been already solved but remain undone, i. e., the
existence of disjoined pairs; the addition of more
pieces to be assembled; the occurrence of trash
objects occluding assembly parts; and having the

manipulator halted during its movements before it
achieved the goal.

• To perform online resource allocation
A resource is defined as a part of the system that

can be time-shared by different problem solving
processes. The resources to be shared in the
Assembly application are the camera and the
manipulator. Both the camera and the manipulator
are shared by the three concurrent task hierarchies:
Assembly, Cleaning and Collision Avoidance. No
conflicts arise due to a request for the camera
resource by any of the three hierarchies. On the
other hand, the manipulator is highly disputed and
hence the tasks have to obey a specific policy for
conflict resolution, since only one task should
control the manipulator in a given moment. The
Collision Avoidance task should have the highest
priority in order to prevent accidents, with the
Cleaning task second with a higher priority than
the Assembly task.

• To sense the world
The robot posses the vision capability to sense

the world, i.e., to recognize and locate the
assembly parts, trash and to detect movement in
the scene.

• To deal with problems as they arise in real-
time

The collision avoidance task has to be
performed in real-time to protect the human
operator and preserve the devices.

• To reason with incomplete information and
unpredictable events

Human interactions can happen at any time
interfering with the Assembly task in different and
unpredictable ways: the operator can add trash or
new assembly parts and the robot has to be able to
properly deal with that.

4. The choice of a problem solving
approach

As discussed before, the deliberative approach
can not successfully attend the real-time
requirements of a dynamic domain. Therefore,
rather than building a centralized system to do all
the reasoning, some authors ([Firby: 96; Garcia-
Alegre et al.: 97; Medeiros et al.: 97; Neves et al.:
97]) have accomplished good results by building a
number of computational elements that contains
only the data and expertise knowledge necessary to
perform their own task allowing the capabilities to
be distributed among these elementary building
blocks.

The reactive approach follows the same idea of
implementing a system as a collection of
independent behaviors reminding the distributed
approach. However the overall behavior emerging
from the organization of several dedicated
behaviors do not cope with the requirements of
real application problems [Medeiros et al.: 97].
Those systems do not provide symbolic
representation for cognitive reasoning, i.e., to
reason with a symbolic world model in a
deliberative way.

The hybrid architecture combining the
deliberative and the reactive approach have been
suggested as a promising solution, since it is
capable of reacting to events that occur in the
environment without engaging in complex
reasoning as well as is capable of developing plans
and making decisions [Firby et al.: 95; Garcia-
Alegre et al.: 97; Haigh et al.: 97; Lyons: 95;
Medeiros et al.: 97; Wooldridge et al.: 95].

Some recent results on a Multi-Agent approach
for building reactive applications [Firby: 96;
Garcia-Alegre: 97] have shown its advantages.
Coming from the Distributed Artificial
Intelligence field (DAI) with the idea of
distributing knowledge and process, this approach
proposes models to develop heterogeneous
modules, called agents, which cooperate and

interact among them. The autonomy of each agent
can allow them to intentionally affect the
environment in unpredictable ways from other
agents point of view, resulting in the uncertainty
that may be inherent in the domain.

The term agent is generally used in AI,
assuming a variety of definitions. For most of this
paper, we will rely on the definition of agents as
“computational systems that inhabit some complex
dynamic environment, sense and act autonomously
in this environment, and by doing so perform a set
of goals or tasks for which they are designed”
[Maes: 95].

Multi-Agent Systems (MAS) define the agent’s
organization, which are structural entities where
relationships of authority, communication, control,
and information flow are described.

The explicit use of social rules in the definition
of an agent enables it to achieve its dynamically
acquired goals while not interfering with others.
As conditions change, new agents can be
implemented and activated in the community
during the system execution. On the other hand,
those agents that are not performing well can be
disabled.

Several advantages of using MAS to build
complex systems are listed in [Bond et al.: 88;
Stone et al.: 97; Medeiros et al.: 97]:
• Modularity - complex systems can be divided

into smaller subsystems that can be designed
and implemented separately.

• Parallelism - several independent tasks can be
handled by concurrent separate agents, helping
deal with limitations imposed by time-bounded
reasoning requirements.

• Robustness - greater uncertainty in a task or its
components can be handled by spawning
redundant subtasks that address a problem from
different perspectives.

• Scalability - systems can be built up step by
step by adding incrementally new functions,
thereby including more and more
competencies.

• Simpler programming - from a programmer’s
perspective the modularity of MAS can lead to
simpler programming.

• Flexibility - the design of the system can be
easily changed, guided by demonstrated success
or failures.

• Reusability - different application tasks can
share common subtasks by accessing the same
program or reproducing the code.
In the next section we describe a Multi-Agent

architecture to solve complex reactive planning
tasks, called VIBRA - VIsion Based Reactive
Architecture. The VIBRA architecture will be used
to solve the Assembly domain application
described in Section 3. We will show how a multi-
agent approach can provide desirable advantages,
in special in terms of the modularity and
reusability aspects of its components.

5. The VIBRA Architecture

The VIBRA - VIsion Based Reactive
Architecture can be viewed as a society of
Autonomous Agents (AAs), each of them
depicting a problem-solving behavior due to its
specific competence, and collaborating in order to
conduce the society in the process of achieving its
goals [Bianchi et al.: 96]. The VIBRA architecture
has the ability to process incoming asynchronous
goal requests dictated by sensory data, prioritize
them, temporally suspend lower priority actions,
and interleave compatible behaviors.

An architecture based on Multi-Agent Systems
was chosen to facilitate the opportunistic problem-
solving needed for complex and ill-structured
applications. The Figure 5 illustrates the
modularity and distribution aspects of the
architecture composed of autonomous agents, a
network allowing the communication exchange
among them, and sensors and actuators to interact
with the world.

Figure 5: The proposed architecture.

VIBRA is proposed as a flexible architecture to
be specially applied to the development of
different visually guided robotic tasks once it
contains specialized vision knowledge that has
been accumulated on previous research work
[Rillo: 92; Rillo: 93].

To deal with interactions among the agents, the
society is controlled by a policy involving
conducting rules and an authority structure. This
policy enables the agents to decide which agent
should have the control of one resource at each
moment the authority structure defines the agent’s
priority level in the use of a specific resource. The
authority structure is domain dependent: the
priority levels vary for each agent and each
resource. For example, in the Assembly
application the manipulator and the camera are
shared following different priority levels. As the
camera can supply the image without creating any
conflict among the agents, the competing tasks
have the same priority in their authority structure.
On the other hand, to control the allocation of the
manipulator, the contingency of the domain
imposes the following authority structure: collision
has to be avoided before the execution of the
cleaning task that again should be done before the
Assembly task. In general, reactive tasks should
have precedence over the deliberative tasks and in
this way the authority structure defined for
autonomous agents is a rank ranging from the
most reactive agent to the most deliberative one.

The conducting rules define how the authority
structure can be used to control the

communication and the sharing of resources
among agents. In the VIBRA architecture we
adopt the following three simple rules:

Rule # 1: Only one agent can control a resource
in a given moment.

Rule # 2: At any moment any agent can request
the control of a resource from an agent
with lower authority than itself.

Rule # 3: An agent can only request the control
of a resource to an agent with higher
authority than itself if that agent is
releasing the control.

5.1 The structure of an Autonomous
Agent

An autonomous agent (AA) is composed of
eight important components (Figure 6):
1. Communicator module: responsible for the

interactions among AAs, reasoning about the
society policy; contain knowledge about the
protocol and language of interactions among
agents (external to the AA) and between
planner/executor module defined bellow.

2. Planner / Executor: responsible for generating
and executing a plan to solve the task that will
depict the behavior expected from the AA.
This module can vary in its content complexity
depending on how complex is the competence
of the agent. In fact, the complexity of this
module is also a rank ranging from the most
reactive agent to the most deliberative one.

3. Set of Primitive Agents (PAs): responsible for
very simple tasks, including sensing and acting
in the environment. In this way, the AA can
only receive sensorial information by
activating the respective PA. Their structure is
a simpler version of the AA.

4. Protocols and languages of interaction: define
the communication capability of the agent.

5. Authority structure: consists of the relation

Communication

Sensors Actuators

AA AA AA……

resource/agent priority level.
6. Conducting rules of the society: defines how to

rule the relation resource/agent priority level.
7. Set of AAs in the society: lists the AAs that

compose the society.

8. Symbolic representation of the world:
represents the knowledge about the
environment that each agent needs in order to
perform its behavior.

PA

Communicator

Planner / Executor

AA

AA

AAKnow-
ledge /
Data

AA

ActuatorsSensors

PA PA PA PA PA...

Plan
PA PAPA PA...

PA

Figure 6: Agent model.

This model is used to define all AAs in the
society, no matter what their behavior is. A special
agent in the society can create, change or destroy
the society, by adding or deleting agents, and
controlling the resources at the initialization or
termination phase of the society.

In the next section we detail the communication
language, since it is an essential feature in a multi-
agent environment.

5.2 AA’s Communication Languages

The Communication Language among AAs in
the society is defined by the following message
prototype:

<interaction> ::= <nature><type><content>
The nature of the message can be decision or

control. The decision messages are used to interact

with other agents, deciding which agent will take
the control of a resource of the system at a time.
There are three types of decision messages:
request, transfer and free. The control messages
are used in the initialization, modification and
termination of the society. There are six types of
control messages: addAgent, deleteAgent,
acknowledge, inform, requestAll, freeAll. Table 1
summarizes the communication language defined
for the autonomous agents.

A different set of messages is used for the
internal interaction between the planner/executor
(EX) module and the communicator (C) module.
The nature of this communication language is
information, and there are six types of messages,
described in Table 2: request, free, received, lost,
halt, information.

<nature> <type> <content> Description
addAgent <name of the new agent>

<new authority structure >
Add a new agent in the society

deleteAgent <name of the agent> Delete an agent

control
inform <resource> <free | in_use>

< name of the agent>
Inform about the allocation of the resources in
the society

requestAll Request all resources to all agents in the
society

freeAll Free all resources
acknowledge Acknowledge the insertion or deletion of an

agent
request <name of the requesting agent>

<resource>
Request a resource

decision free <name of the agent> <resource> Inform the society that a resource allocated by
the agent is not in use

transfer <name of the requesting agent>
<resource> <state of the resource>

Inform all agents about the new resource
controller

Table 1: Types of messages defined in the communication language for interactions among agents in the
society.

<nature>: information
From →→ To <type> <content> Description
EX → C request <resource> Inform that a resource is needed
EX → C free <resource> Inform that the resource is not more in use
C → EX received <resource>

<state of the resource>
Inform that the resource was acquired and its

state
C → EX lost <resource> Inform that another AA is taking the resource
C → EX halt Halt execution
EX ↔ C information <resource>

<state of the resource>
Update the state of the resource

Table 2: Types of messages changed between the AA communicator module and its planner/executor
module.

6. The Assembly application in the
VIBRA architecture

In the present implementation we have decided
to create autonomous agents allocated on several
workstations, where they are executed as
independent and parallel distributed processes,
communicating through the Ethernet/ATM
network, so we could take advantage of the
network availability. The camera is fixed above
the work area.

For the Assembly application, we have defined
three different behaviors, each one corresponding

to an autonomous agent, which are:
Assembler agent: to accomplish the assembly

task, picking up pieces (tenons) on the work table
with the manipulator and putting them in a desired
location (mortises).

Cleaner agent: to clean up the work area, taking
away unwanted objects that humans or another
manipulator may have put on this area.

CollisionAvoider agent: to avoid collisions of
the manipulator with objects (other manipulators, a
human) that move in the work area.

The high level plans used by the defined
Assembler, Cleaner and CollisionAvoider agents

in the VIBRA system are described in Figure 9,
Figure 8 and Figure 7 respectively.

CollisionAvoider

(

(detect-moving-object object)

((freeze manipulator) while (keep-
on-moving object))

)

Figure 7: The CollisionAvoider plan.

Cleaner
(

(scan-for-static-object trash)

(pickup-object trash trash-position)

(move-object trash trash-can-
position)

(drop-held-object)

)

Figure 8: The Cleaner plan.

Assembler

(

 (scan-for-free-parts parts)

(select-pair tenon mortise)

 (pick-up-object tenon tenon-
position)

(move-object tenon mortise-position)

(join-pair tenon mortise)

)

Figure 9: The Assembler plan.

6.1 Experimental results

In order to test the VIBRA architecture when
performing a real reactive task, we developed an
experiment by giving to the robot a cleaning task
while avoiding collisions with a human hand. This
way we want to test the performance of those two
agents, the Cleaner and the CollisionAvoider, by

showing how the interactions were successfully
dealt by the VIBRA architecture.

The experiment consists of:
1. A human hand places a trash object (a circular

piece) on the work table, activating the
CollisionAvoider;

2. Cleaner commands the manipulator to remove
the trash piece;

3. Human hand places another trash object on the
work table;

4. During the new cleaning action, a new
interference occurs: a moving unknown object
enters the work area;

5. When the moving object disappears from the
scene, the Cleaner resumes its work, finishing
the started trash removal.

Different aspects of this experiment are shown
in Figure 10, Figure 11 and Figure 12.

Figure 10 shows the image sequence of the
experiment. Figure 11 describes the actions
executed by the Cleaner and the CollisionAvoider
agents when performing the experiment. Each
action shows its corresponding start and finish
time so that one can notice the system efficiency
while dealing with vision process, reacting to a
human hand moving in the scene and executing a
planning task as cleaning the table. In Figure 12
we can see the message exchange between the two
agents.

Following, a detailed description of the
experiment is given.

The system is started at 12:49:27, and the
actions (scan-for-static-object trash) and (detect-
moving-object object) are started at Cleaner and
CollisionAvoider (figure 10, images 1 and 2). At
12:50:00 an unknown object enters the work area
and keeps moving for 10 seconds. During this
time, the actions (freeze manipulator) and (keep-
on-moving object) are executed simultaneously at
CollisionAvoider, in parallel with the (scan-for-
static-object trash) at Cleaner.

1

[12:49:58]

2

[12:49:59]

3

[12:50:00]

4

 [12:50:01]

5

[12:50:02]

6

[12:50:03]

7

[12:50:08]

8

[12:50:09]
9

[12:50:10]

10

[12:50:11]

11

[12:50:12]

12

[12:50:14]

13

[12:50:14]

14

[12:50:15]

15

[12:50:15]

16

[12:50:16]
17

[12:50:20]

18

[12:50:21]

19

[12:50:22]

20

[12:50:49]

21

[12:50:50]

22

[12:50:54]

23

[12:50:56]

24

[12:50:57]
25

[12:50:58]

26

[12:50:59]

27

[12:51:00]

28

[12:51:01]

29

[12:51:07]

30

[12:51:08]

31

[12:51:08]

32

[12:51:09]

Figure 10: Sequence of images showing 2 unknown objects being placed and removed from the work area.

From image 3 to 12, the CollisionAvoider
detects movements in the work area and requested
the control of the manipulator to freeze its actions.
The CollisionAvoider requests the manipulator at
12:50:00 (image 3) and received it at 12:50:01
(image 4). In parallel the Cleaner agent (images 1
to 11) keeps on scanning for static objects. The
human interaction stopped at 12:50:12 (image 11).
At this moment the CollisionAvoider frees the
control of the manipulator allowing Cleaner to
request the manipulator since it detects a trash
piece in the table (image 12). The
CollisionAvoider action (detect-moving-object

object) restarts.
Cleaner’s actions (pickup-object trash trash-

position) (images 12 - 17), (move-object trash
trash-can-position) (images 17-19) and (drop-
held-object) (image 19) are executed, removing
the trash piece from the work table. Then the
Cleaner action (scan-for-static-object trash)
restarts.

At 12:50:47 another unknown object enters the
work area, and is placed on the work table at
12:50:50 (images 21 and 21). During this time, the
respective actions of the CollisionAvoider are
executed.

Agent Communication Log Archive
Started at host nausika at Fri Dec 12 12:49:27 1997
[AGENT NAME][TIME] [TASK AND MESSAGES]
[cleaner-execution][12:49:34] (scan-for-static-object trash) started
[collisionAvoider-exe][12:49:36] (detect-moving-object object) started
[collisionAvoider-exe][12:50:00] Resource Manipulator Needed
[collisionAvoider-exe][12:50:00] (detect-moving-object object) finished
[collisionAvoider-exe][12:50:01] Resource Manipulator Received
[collisionAvoider-exe][12:50:01] (freeze manipulator) started
[collisionAvoider-exe][12:50:01] (keep-on-moving object) started
[collisionAvoider-exe][12:50:12] (freeze manipulator) finished
[collisionAvoider-exe][12:50:12] (keep-on-moving object) finished
[collisionAvoider-exe][12:50:12] (detect-moving-object object) started
[cleaner-execution][12:50:14] (scan-for-static-object trash) finished
[cleaner-execution][12:50:14] Resource Manipulator Needed

[cleaner-execution][12:50:14] Resource Manipulator Received
[cleaner-execution][12:50:14] (pickup-object trash position((157) (133))) started
[cleaner-execution][12:50:20] (pickup-object trash trash-position) finished
[cleaner-execution][12:50:20] (move-object trash trash-can-position) started
[cleaner-execution][12:50:24] (move-object trash trash-can-position) finished
[cleaner-execution][12:50:24] (drop-held-object) started
[cleaner-execution][12:50:25] (drop-held-object) finished
[cleaner-execution][12:50:25] (scan-for-static-object object) started
...
[collisionAvoider-exe][12:50:47] Resource Manipulator Needed
[collisionAvoider-exe][12:50:47] (detect-moving-object object) finished
[collisionAvoider-exe][12:50:47] Resource Manipulator Received
[collisionAvoider-exe][12:50:47] (freeze manipulator) started
[collisionAvoider-exe][12:50:47] (keep-on-moving object) started
[collisionAvoider-exe][12:50:51] (freeze manipulator) finished
[collisionAvoider-exe][12:50:51] (keep-on-moving object) finished
[collisionAvoider-exe][12:50:52] (detect-moving-object object) started
[cleaner-execution][12:50:54] (scan-for-static-object trash) finished
[cleaner-execution][12:50:54] Resource Manipulator Needed
[cleaner-execution][12:50:54] Resource Manipulator Received
[cleaner-execution][12:50:54] (pickup-object trash position((269) (78))) started
[collisionAvoider-exe][12:50:57] Resource Manipulator Needed
[collisionAvoider-exe][12:50:57] (detect-moving-object object) finished
[collisionAvoider-exe][12:50:57] Resource Manipulator Received
[collisionAvoider-exe][12:50:57] (freeze manipulator) started
[collisionAvoider-exe][12:50:57] (keep-on-moving object) started
[cleaner-execution][12:50:59] Resource Manipulator Needed
[collisionAvoider-exe][12:51:06] (freeze manipulator) finished
[collisionAvoider-exe][12:51:06] (keep-on-moving object) finished
[collisionAvoider-exe][12:51:06] (detect-moving-object object) started
[cleaner-execution][12:51:07] Resource Manipulator Received
[cleaner-execution][12:51:07] (pickup-object trash trash-position) finished
[cleaner-execution][12:51:07] (move-object trash trash-can-position) started
[cleaner-execution][12:51:09] (move-object trash trash-can-position) finished
[cleaner-execution][12:51:09] (drop-held-object) started
[cleaner-execution][12:51:12] (drop-held-object) finished
[cleaner-execution][12:51:12] (scan-for-static-object object) started

Figure 11: The plan generated by the Cleaner and CollisionAvoider.

When the object is placed on the table, Cleaner
agent begins to remove it, starting to execute the
action (pickup-object trash trash-position) (images
22 and 23). But during the execution of this
cleaning action, another unknown object enters the
work area (at 12:50:57, image 24), and

CollisionAvoider actions are executed again
(images 24 - 28). At 12:51:05, the object leaves
the work area and the Cleaner finishes his action
(pickup-object trash trash-position) (image 29)
and executes (move-object trash trash-can-
position) and (drop-held-object) (images 30 - 32).

Agent Communication Log Archive
Started at host nausika at Fri Dec 12 12:49:27 1997
[AGENT NAME][TIME] and Message
[assembler][12:50:01] Message received From: collisionAvoider. Message:
(request (collisionAvoider) (manipulator)).
[assembler][12:50:01] (transfer (collisionAvoider) (manipulator) (initial
resource working state))
[assembler-execution][12:50:01] LOG MESSAGE: Resource Manipulator Lost

[collisionAvoider-exe][12:50:01] LOG MESSAGE: Resource Manipulator Received
[collisionAvoider][12:50:12] (free (manipulator))
[collisionAvoider][12:50:14] Message Received From:: cleaner. Message: (request
(cleaner) (manipulator)).
[collisionAvoider][12:50:14] (transfer (cleaner) (manipulator) (initial resource
working state))
[cleaner-execution][12:50:14] LOG MESSAGE: Resource Manipulator Received
[cleaner][12:50:25] (free (manipulator))
...
[collisionAvoider-exe][12:50:47] LOG MESSAGE: Resource Manipulator Needed
[cleaner][12:50:47] Message Received From: collisionAvoider-execution.
Message: (request (manipulator)).
[cleaner][12:50:47] (transfer (collisionAvoider) (manipulator) (free
working state))
[collisionAvoider-exe][12:50:47] LOG MESSAGE: Resource Manipulator Received
[collisionAvoider][12:50:52] (free (manipulator))
[cleaner-execution][12:50:54] LOG MESSAGE: Resource Manipulator Needed
[collisionAvoider][12:50:54] (transfer (cleaner) (manipulator) (free))
[cleaner-execution][12:50:54] LOG MESSAGE: Resource Manipulator Received
[collisionAvoider-exe][12:50:57] LOG MESSAGE: Resource Manipulator Needed
[cleaner][12:50:57] Message Received From:: collisionAvoider. Message:
(request (collisionAvoider) (manipulator)).
[cleaner][12:50:57] (transfer (collisionAvoider) (manipulator) (object
trash held))
[collisionAvoider-exe][12:50:57] LOG MESSAGE: Resource Manipulator Received
[cleaner-execution][12:50:59] LOG MESSAGE: Resource Manipulator Needed
[collisionAvoider][12:51:06] (free (manipulator))
[collisionAvoider][12:51:06] Message Received From:: cleaner, Message: (request
(cleaner) (manipulator)).
[collisionAvoider][12:51:06] (transfer (cleaner) (manipulator) (object trash held))
[cleaner-execution][12:51:07] LOG MESSAGE: Resource Manipulator Received
[cleaner][12:51:12] (free (manipulator))

Figure 12: Message exchange among agents.

By analyzing the data generated by the
described experiment, some response times can be
determined:
1. Table 3 presents the higher and lower speed an
object can have so that the CollisionAvoider agent
can detect it, when it is alone in the society. As can
be seen, there is a tradeoff between low and high
resolution. In low resolution, higher speeds are
bigger because the agent acquires more images per
seconds, and in medium resolution, lower speed
detection is better because we can have higher
precision when processing images since the
camera is fixed and the resolution is higher.

Image Resolution
(pixels)

Higher Speed
(m/s)

Lower Speed
(cm/s)

Low
(64 x 48)

6.05 39

Medium
(120 x 80)

1.1 3.6

Table 3: Higher and lower speed for moving
object detection by the CollisionAvoider agent.

2. Table 4 shows the time that the Collision-
Avoider takes to react to a moving object entering
the work area, for different configurations. As can
be seen, the reaction time is dependent on the
image resolution and on the network throughput,
as images need large bandwidth.

Configuration Proc. Comm. Network
delay

Total

Standalone
(64 x 48)

0.05 0.05 0 0.1

Standalone
(120 x 80)

0.35 0.05 0 0.4

With Cleaner
(120 x 80)

0.35 0.05 0 to 1.5 < 1.9

Table 4: Reaction Time in seconds for
CollisionAvoider in different configurations.

3. Finally, Table 5: Cleaner Agent average
processing time.

4. presents average times for the Cleaner agent
to complete its actions, when not interrupted by
another agent. Here, the network delay is high
because Cleaner and the Image Acquisition agents
are not hosted on the same machine and Cleaner
works with (320 x 240) images. Also, the working
time of the robot is the most critical time
restriction, as expected.

Processing Communication Network
delay

Working
time

less than 1 0.05 2 to 4 10 to 15

Table 5: Cleaner Agent average processing time.

7. Discussion and Conclusion

This paper describes the design of an
implemented multi-agent architecture, VIBRA,
which is a vision-based architecture that can offer
a proper framework for building reactive, vision-
based planning applications. From a computer
vision point of view, VIBRA is a sufficiently
flexible tool to create specialized and efficient
visual routines to solve specific tasks efficiently. In
this way, it can be used as a framework for
knowledge acquisition, development and design of
new robotic applications.

By applying VIBRA to the design of the
Assembly application we have learned some
important experiences on building a real world

robotic system. Some of these important
experiences are shared by other researchers, who
also used the Multi Agents approach in real world
applications [Boissier et al.: 94; Bond et al.: 88;
Neves et al.: 97; Garcia-Alegre et al.: 97]. Such
knowledge can be used to provide support on the
development of new real world planning systems
[Barros et al.: 97; Barros et al.:97a]. Some of the
important resulting experiences are listed bellow:
• When a community of agents is supposed to

work in some coordinated manner, it is
important to decide about the division of labor
and organization, such as: defining tasks,
selecting which agent does each task, and
defining when it executes the task.

• The languages and concepts used for task
description and formulation will affect how
tasks can be decomposed, and what
dependencies explicitly exist among tasks. The
same task described from different
perspectives may require different partitioning
and different skills.

• A distribution of tasks among agents requires
the tasks to be formulated and described in a
way to provide a better possibility of
decomposition, allowing a natural distribution
among agents. Tasks requiring more resources
or knowledge than an agent can possess must
be decomposed. We based our decomposition
on the definition of independent cognitive
behaviors.

• Dependencies among subproblems affect the
agent design, i.e., in terms of predicting
possible data flow, decision processes and
actions.

• Conflicts over incompatible actions and shared
resources may place ordering constraints on
agent activities, restricting decomposition
choices and forcing the need of reconsidering
decomposition in different dimensions, such as
temporal, spatial, or levels of abstraction.
Those are the parameters that a designer has to
adjust in the society behavior in order to solve

the global task goal.
• The society rules depend on the type of the

available resources and on what are the needs
of the agents over the different resources.

• The authority structure of a society is deeply
related to the dependence and precedence
among tasks conduced by the AAs. Often, the
more reactive task is given some kind of
precedence over the deliberative one, so that it
can provide a rapid response to important
environmental events.

In terms of analyzing the existing theories on
how a robotic system should be built, we could
reach some important insights about the vision and
planning areas, suggesting a new interpretation and
parallels between them, as illustrated in Figure 13.

Vision tasks can traditionally solve recognition
problems through two different approaches: the
recovery and the purposive. In the recovery vision
approach, a precise 3D world model is
constructed, gathering as much information about
the world as possible. However, to every change in
the world a new model has to be constructed
implying high computational cost. On the other
hand, the purposive approach decomposes the
visual task into, what is usually called, recognition
behaviors according to the different types of
expertise required by a given domain task. By
recognition behaviors we should understand that
the recognition capability is driven by the behavior
required by the task. Computational efficiency is
gained with selective and directed vision processes
by discarding image information not relevant to
the task.

The planning area has two basic approaches: the
reactive and the deliberative. In the reactive
planning, the task is decomposed according to
specialized autonomous behaviors. In this case,
autonomous behavior means the robot behavior
while executing a given task, involving perception
and action. We make a parallel between purposive
vision and reactive planning: both approaches
involve perception and action but from different

points of view. In the reactive planning the robot
generates an autonomous behavior by executing a
number of actions corresponding to possible world
state changes with use of perceptual capabilities
(involving perception plus action). On the other
hand, the purposive vision, directed by those
world actions, provides specialized vision
processes, defining different recognition
capabilities according to the desirable robot
behavior and therefore they are called recognition
behaviors (involving only perception). An
important point to be noticed is that, since the
reactive planning requires real-time responses, the
idea of vision-based specialized recognition
processes shows a suitable matching between
these two areas.

The goal of a deliberative planning task is to:
generate a plan; perform plan refinement and/or
task decomposition; solve interactions conflict;
allocate resources; perform variable codesignation,
etc. In order to plan in a dynamic world, planning
has to alternate execution, reaction and perception.
By combining planning and perception the
knowledge of the situation will be directed, rather
than predicted (or previously specified) this way,
most of the uncertainty and some of the
incompleteness problems can be solved. This is
shown with the dotted links between the
recognition behaviors and the primitive tasks in
the domain application, and/or the links between
the 3D World Model and the primitive tasks (the
alternative approaches to do vision recognition
depends on the nature and requirements of the
primitive task). The combination of the
deliberative and reactive planning requires both of
them running as independent processes while
solving complex tasks. With VIBRA we have
proposed a suitable multi-agent architecture which
has proven to efficiently allow this combination,
attending the desirable AI challenge of having
intelligent goal-driven reactive systems.

VISION PLANNING

Reactive
Planning

Recovery
Vision

3D World Model

Deliberative
Planning

Purposive
Vision

Expertise
Decomposition

 Expertise
Decomposition

Task and
Abstraction
Decomposition

Application Domain

Recognition
Behaviors Autonomous

Behaviors
Primitive
Tasks

Figure 13: Integration of AI planning and vision according to different approaches.

8. References

[Aloimonos:94] Aloimonos, Y. What I have
learned. CVGIP: Image Understanding, 60:1, p.74-
85, July 1994.

[Bajcsy: 88] Bajcsy, R. Active perception.
Proceedings of the IEEE, 78:8, p.996-1005, 1988.

[Barret et al.: 94] Barret, A.; Weld, D. S.
Partial-order planning: evaluating possible
efficiency gains. Artificial Intelligence, 67. 1994.

[Barros et al.: 97] Barros, L.N.; Hendler, J.;

Benjamins, V.R. Par-KAP: a Knowledge
Acquisition Tool for Building Practical Planning
Systems. In: International Joint Cconference On
Artificial Intelligence (IJCAI), Nagoya, Japan,
1997. Proceedings.

[Barros et al.: 97a] Barros, L.N.; Hendler, J.;
Benjamins, V.R. Par-KAP: a Knowledge
Acquisition Tool for Building Practical Planning
Systems. In: Proceedings of Ninth Dutch
Conference on Artificial Intelligence, NAIC'97, K.
van Marcke, W. Daelemans, Eds, University of
Antwerp, Belgium, p. 137-148, 1997.

[Bianchi et al.: 96] Bianchi, R.A.C.; Rillo,
A.H.R.C. A distributed control architecture for a
purposive computer vision system. 2nd.
Symposium on Intelligence in Automation and
Robotics (IAR’96), IEEE, Rockville, Maryland,
USA, 4-5 November, 1996. p. 288-294.

[Boissier et al.: 94] Boissier, O; Demazeau, Y.
ASIC: An architecture for social and individual
control and its application to Computer Vision. In:
European Workshop On Modeling Autonomous
Agents In A Multi-Agent World, 1994.
Proceedings. 1994. p.107-18.

[Bond et al.: 88] Bond, A. H.; Gasser, L.
Readings in Distributed Artificial Intelligence.
Morgan Kaufmann, San Mateo, CA, 1988.

[Brooks: 91] Brooks, R. A. Intelligence without
representation. Artificial Intelligence, 47, 1991. p.
139-59.

[Dean et al.: 95] Dean, T.; Allen, J. Aloimonos,
Y. Artificial Intelligence: Theory and Practice.
Benjamin/Cummings Publishing Co., Redwood
City, CA, 1995.

[Fermüller: 93] Fermüller, C. Basic Visual
Capabilities. CS-TR-3064, University of
Maryland, College Park, MA, 1993.

[Firby et al.: 95] Firby, R. J.; Kahn, R. E.;
Prokopowicz, P. N.; Swain, M. J. Collecting trash:
a test of Purposive Vision. Workshop on Vision
for Robots, Pittsburgh, PA, 1995.

[Firby: 96] Firby, R. J. Modularity Issues in
Reactive Planning. Proceedings of the 3rd

International Conference on AI Planning Systems,
May 1996. p. 78-85.

[Garcia-Alegre et al.: 97] Garcia-Alegre, M. C.;
Recio, F. Basic Agents for Visual/Motor
Coordination of a Mobile Robot. AGENTS’97
Conference Proceedings, Marina del Rey, CA,
USA. ACM, 1997.

[Haigh et al.: 97] Haigh, K. Z.; Veloso, M.
High-Level Planning and Low-Level Execution:
Towards a Complete Robotic Agent. In
Proceedings of the First International Conference
on Autonomous Agents, February 1997.

[Hanks et al.: 93] Hanks, S.; Pollack, M. E.;
Cohen, P. R. Benchmarks, Test Beds, Controlled
Experimentation, and the Design of Agent
Architectures. AI Magazine, p. 17-42, Winter
1993.

[Jolion: 94] Jolion, J.M. Computer vision
methodologies. CVGIP: Image Understanding,
v.59, n.1, p.53-71, Jan. 1994.

[Lyons et al.: 95] Lyons, D. M.; Hendriks, A. J.
Exploiting Patterns of Interaction to achieve
reactive behavior. Artificial Intelligence, 73, 1995.
p. 117-148.

[Maes: 95] Maes, P. Artificial Life meets
entertainment: life like autonomous agents.
Communications of the ACM, 38:11, 1995, p.108-
114.

[Marr: 82] Marr, D. Vision. New York,
Freeman, 1982.

[Medeiros et al.: 97] Medeiros, A. A. D.;
Chatila, R. Priorities and data abstraction in
hierarchical control architectures for autonomous
robots. In: Workshop on Intelligent Robotics,
Brasília, Brazil, 1997. p. 207-220.

[Minton et.al: 91] Minton, S.; Bresina, J.;
Drummond, M. Commitment strategies in
planning: a comparative analysis. In: IJCAI, 1991.

[Neves et al.: 97] Neves, M. C.; Oliveira, E. A
Control Architecture for an Autonomous Mobile
Robot. AGENTS’97 Conference Proceedings,
Marina del Rey, CA, USA. ACM, 1997.

[Rillo: 92] Rillo, A.H.R.C. Grouping-based
recognition system. SPIE'91 - Advances in
Intelligent Robotic Systems - Model-based vision
development and tools conference, 11-15
November 1991, BOSTON, Massachusetts, USA,
R. M. Larson & H. N. Nasr (eds.), Proc. SPIE
1609, 1992, pp. 274-282.

[Rillo: 93] Rillo, A.H.R.C. 3D object
recognition using a decision hierarchy. SPIE'1992
International Symposium on Optical Applied
Science and Engineering - Applications of digital
image processing XV, 19-24 July 1992, San
Diego, California, USA. Proc. SPIE 1771, Andrew

G. Tescher (ed.), Lockheed Palo Alto Research
Lab., Saratoga, CA, USA.1993, p.225-33.

[Rillo et al.: 92] Rillo, M.; Rillo, A.H.R.C.;
Costa, L.A.R. The LSI Assembly Cell. In: IFAC
Symposium on Information Control Problems in
Manufacturing Technology, 7º, Toronto, 1992.
Proceedings. IFAC, 1992. p. 361-5.

[Stone et al.: 97] Stone, P.; Veloso, M.
Multiagent Systems: A Survey from a Machine
Learning Perspective. CMU Internal Report,
February 1997.

[Tarr, Black: 94] Tarr, M. J.; Black, M. J. A
computational and evolutionary perspective on the
role of representation in vision. CVGIP: Image
Understanding, v.60, n.1, p.65-73, July 1994.

[Wooldridge et al.: 95] Wooldridge, M.;
Jennings, N. R. Intelligent Agents: Theory and
Practice. Knowledge Engineering Review, 1995.

