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Abstract. This work presents a new class of algorithms that allows #e af
heuristics based on policy to speed up reinforcement legraigorithms. This
class of algorithms, called “Heuristically Accelerateddraing” is modeled by
a convenient mathematical formalism known as Markov DegiBrocesses. An
heuristic functior{ that influences the choice of the actions is defined in order
to model the HALs. This heuristic is updated during the leagrprocess. This
work also proposes automatic methods for the extractiometieuristic func-
tion H from the problem domain or from the learning process, célldeuristic
from X”. A new algorithm called Heuristically Accelerated-Qearning is pro-
posed to validate this work. It implements a HAL by extentegwell-known
RL algorithm Q—-Learning. Finally, we show some experimieesults that al-
low to conclude that even a very simple heuristic resultssigaificant increase
of the performance of the reinforcement learning algoritised. A list of future
work is then presented.

1. Introduction

The main problem approached in this paper is the speedup &d¢mforcement Learning
(RL) aiming its use in mobile and autonomous robotic agectis@in complex environ-
ments. We wish to keep the RL algorithms advantages, inofyitie convergence for the
stationery policy, the free choice of actions to be takeml, i@ unsupervised learning,
minimizing its main disadvantage: the time necessary famimg.

The main hypothesis of this paper is that there is a class oalgarithms that
allows the use of heuristics to approach the problem of legrepeedup. This class of
algorithms is calledHeuristically Accelerated Learning (HAL).

The rest of this paper describes this proposal deeply:ase2tdescribes the meta-
algorithm of "Heuristically Accelerated Learning”; 3 detxes the formalization of HALs
using a heuristid{ function and section 4 describes the algorithms used to el¢fie
heuristic function, named "Heuristic from X”; sections 5daf describe a complete im-
plementation of an algorithm of HAL class based on Q-Leaynihe Heuristically Acce-
lerated Q-Learning — HAQL; finally 7 describes the domain seht@is proposal is being
evaluated and the results obtained.

2. The HAL Meta-Algorithm

In a more formal way, a HAL class algorithm can be defined asyaofiaolving a mode-
ling problem by a MDP which definitely sees the heurigtic S x A — R to influence



the actions choice, by the agent during its learniig.s;, a;) defines the heuristic which
indicates the importance of performing the actigin s; state.

The heuristic function is strongly associated to the poleery heuristic indicates
that an action must be taken despite other. This way, we gattatthe heuristic function
defines a "Heuristic Policy”, that is, an attempt policy usedaccelerate the learning
process.

As the heuristic is used only for the choice of the action ttalzen, this algorithms
class is different from the RL algorithms proposed so farflusthe way the explanation is
carried out. As the RL algorithm operation isn’t modifiedr(fiastance, without changing
the updating of the functior), this proposal allows many of the obtained conclusions
of RL algorithms to remain valid for the HALs! The use of heuristic function made
by HALs explores an important characteristic of some RL atgms: the free choice of
training actions. The consequence of this user is that atsaiheuristics speeds up the
learning process, and if the heuristic isn’t suitable, #wft is a delay which doesn’t stop
the system from converging to a optimal value (in case of #tertchinistic systems).

Another important HALSs feature is that the heuristic funotcan be modified on
each iteration. This allows the speedup to be used in a pteenatage of Learning and
modified each time more information about the system becavedtable.

The class of the algorithms "Heuristically Accelerated dr@éag’can be divided
in two sub-classes: the one which uses the knowledge abeuddmain to abstract a
heuristic and the ones which use clues that exist in theilggprocess itself.

In the first case, the heuristic is learned from the stataseuwby the agent. This
learning process can be made by generic techniques or "dchktitods. Like this, the
heuristic is a way of knowledge generalization which we hamecerning the domair.

In the second case, the heuristic is extracted from dataeofeilrning process
itself. Among these clues, two of them are more relevant: véldae function and the
system policy in a certain moment.

A second hypothesis made in this paper is that these mustdrgedamount of
methods which can be used to learn the heuristic functiorceSihese are many domains
in which RL can be used and many ways of extracting knowledga fa domain, this
hypothesis is easily validated. The learning methods oth#hristic policy are named
“Heuristic from X"”.

The generic procedure which defines the operation of the ristgeally Accele-
rated Learning”’can be described as a meta-algorithm. Tbisgplure involves four steps
repeated sequentially until some stop criteria is achieVéis meta-algorithm is descri-
bed in table 13

Any algorithm that uses heuristics to select an action, Wwitan be estimated
on-lineis an instance of the meta-algorithm HAL. This way, we carldbalgorithms
of this class from most reinforcement learning algorithrAs. an example in section 5
the Heuristically Accelerated Q—Learningvill be presented, extending the Q-Learning

We can say that the reinforcement learning algorithms arégreup of HAL algorithms, where the
influence of heuristic is always null.

2As in the optimization by ant colonies, [Bonabeau et al.,®@@®¢hich uses the distance of the cities as
heuristic.

3This nomenclature is made because as there are many teebhiggestimate the shape of the objects in
the area of Computational Vision (CV), call&8hape from X", here there are also many ways to estimate
the heuristic. In the “Shape from X" the individual technégare named as “Shape from Shading”, “Shape
from Texture”, “Shape from Stereo’ [Nalwa, 1993]. .



Tabela 1: The meta-algorithm "Heuristically Accelerated L earning”
Initialize the estimate of the value function.
Repeat:
Being unders; state select an action using a
combination of the heuristic with a suitable value function
Receive the reinforcements, a) and notice the next staté
Update the heuristic functioH, (s, a) using a suitable
“method Heuristic from X”
Update the values of the value function used.
Update the state < s'.
Until some stop criteria is achieved.

where:s = s;, s’ = ;.1 anda = «;.

algorithm [Watkins, 1989].

The idea of using heuristics with a learning algorithm hasay been approa-
ched by other authors, as in the approaching of OptimizdijoAnt Colony presented
in [Gambardella and Dorigo, 1995, Bonabeau et al., 2000jvé¥er, the possibilities of
this use weren’t properly explored yet. Particularly, tlse wf heuristics extracted fol-
lowing a similar methodology to the one proposed by [Drumt)@902] seems very
promising. Afterwards, each element of the HAL meta-alidponi is analyzed deeply.

3. The Heuristic function ‘H

The heuristic function appears in the context of this papéhaway to use the knowledge
about the policy of an agent to accelerate the learning peoc&his knowledge can be
derived directly from the domain or built from existing ctui@ the learning process itself.

The heuristic function is used only in the transition of esatvhich chooses the
actiona, to be taken in the statg. This way, we can use, to this class of algorithms, the
same formalism used on the RL. A strategy to the action chsittee random exploration
e — Greedy, in which not only the estimate of the probability of trarmit functions7,
and the rewardk, but also the functiorH is bore in mind. The rule of this transition
states is given by:

r(s) = {argmaxat [F(st,at) <] §Ht(st,at)ﬁ} if ¢ < p-, )
Arandom otherwise

where:

e F:S8xA— R:isan estimate of a value function which describes the aataim
ted expected reward. For instance;(i§;, a;) = Q(st, a;) we have an algorithm si-
milar to theQ—Learning Another option is to usE(s,, a;) = (s, a)+7V (si41),
resulting in an extension of the algorithm of Temporal Diéfieces[Sutton, 1988].

e H:S x A — R:isthe heuristic function, which influences the choice dfag
defining the importance of executing the actigrat being on state,. The notet
in heuristic function indicates that it can be differentwotdifferent moments.

e <. IS a mathematical function, which must operate on numbedspaoduce a
value belonging to a ordered set (which the operation of mepation can be

applied).



e { andg: are real variables used to weight the influence of the hiifishction.

e ¢ is a value chosen in an random way with uniform probabilityfQril] andp
(0 < p < 1) is the parameter which defines the exploration/explaitatatio: the
bigger the value op, the smaller is the probability of an random choice.

® a,..ndom 1S @n random action selected among the executable actictstes,.

The first consequence of this formulation is thaf r 5 reduce with time more
quickly than the learning rate, the convergence evidendstirgy for the RL algorithms
remain valid in this approach. Using-Learningas an examplex{ = addition), if the
decrease df is faster than that of the learning ratgthe algorithm converges. Afterwords
two theorems will be presented to prove this statement.

Theorem 1 The use of heuristics in a HAL acting in a deterministic MDRhvgroups

of finite states and actions, limited rewar@8s;, a;) 7min < 7(st,a¢) < Tpge, dis-
count factory the way0 < v < 1 and used values on the heuristic function limited
(Vst, ar) hmin < H(sy,a;) < hmae, doesn’t produce infinite values on the approach of
value function.

Proof: In HAL algorithms, the updating of the approach doesn’tetepon the value of
the heuristic clearly. Thus, the influence that the hewrfstis in the-(s;, a;) is caused by
the differences which may occur during the explorationlexation.

Depending on the heuristic correctness, the exploration mase two effects: if
the heuristicH,(s;, a;) estimates the grid policy perfectly, the exploration isueet,
because the agent always tends to follow less reinforcesnleat there’s no effect which
produces infinite values iR(s;, a;).

If the heuristic H,(s;, a;) is incorrect, the agent will explore states which it
wouldn’t without its influence. The only possibility wher@ anfinite value would be
generated in the approach of the value function is the onetwthe agent is blocked in a
similar state (irdeadlocl, always executing the same action.

However, in this case, the action executed by the agent dadsnge the esti-
mate of the value functiorf. That's because, if the action changed F, after a finite number
of actions the heuristic, which limited By,,;, < H (s, a;) < hpmas, Would not be consi-
dered. The approach of the value function would be so unédoterthat, even if with the
influence of the heuristic, this action wouldn’t be choseyraore leaving theleadlocle.

O

Theorem 2 If the technique of Reinforcement Learning in which a HALasdd conver-
ges independently of the initialization, the HAL also coges.

Proof: In most convergence tests of the algorithms of reinforagnearning, the only
restriction for the initial value of the function value appch is that they must be fi-
nite( see [Mitchell, 1997, pg. 378] for the Q-Learning, [Besvari and Littman, 1996]
for other models).

As the use of the heuristic doesn’t produce infinite valueshenfunction value
approach (theorem 1), there must be ondy delay time between the end of the heuristic
influence (decay of or 3 up to zero) and the decrease of the learning sat@here this
ot is enough time for the learning, to occur, which the HAL cages.[]

4This can occur because the valuga$ already on the lower possible bound for that action or bsea
the action doesn’t generate rewards.

5This theorem doesn’t prove that the system never éeiadlock but even if this happens, the values of
F(s¢, a;) won't tend to infinite
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Figura 1: If § is enough for learning, the system converges.

In the extreme case, where the learning rate never dedays ¢o), this result
is trivial. In the case where both the heuristic influence eredlearning rate decay, the
heuristic influence must end before the learning itselfuFedl shows an example where
this happens.

These two theorems restrict the value which can be used dretlvéstic for finite
numbers. The next theorem allows limiting the values to te&luis the heuristic function
even more accurately.

Definition 1 The error caused in the approach of the value function dubéaise of the
heuristic on learning algorithm is defined by

LH(St) = F(StﬂT*) - F(Staﬂ-H)avst €9, (2)

whereF (s, 77) is the estimate of the value function calculated from th&able policy
by heuristic,7.

Corollary 1 In a system in valance on the optimal value, the use of cotreatistic
won’t cause any changes in the system.

Proof: Direct consequence of the equation 2,because in the cauee thie heuristic
makes the used policy coincide with the optimal policy, weeha? = 7%, F(s;, m) =
F(s¢, 7*) and therefore the errdry (s;) = 0. O The theorem presented afterwards defines
the superior bound for the errdry (s;),Vs; € S.

Theorem 3 The maximum error caused by the use of a limited heuristié Ry <
H(s,at) < hpmae In @ HAL acting in a deterministic MDP, with sets of finite ss&nd
actions, limited rewardsVs;, a;) rmin < 7(st,a:) < Tmae, discount factory the way
0 < v < 1 and which functiomx is used is the sum is superior bounded by:

Li(st) < & [ gw — B 3)

Proof: This proof will be done in parts, becauBér;) can be defined in two different
ways:

1st. Case F(sy, a;) = Q(s¢, ar).



The value functior)(s;, a;) can be defined as [Ribeiro, 2002]:

Qstar) = r(si,a) +7 > Tse,ar, 101)V (s001). 4)

s5t41€S

where:

s; is the present state,

ay IS the action performed igy,

s¢41 Is the state resulting of applying the actignat being ins;,
T'(s¢, as, s¢+1) IS the function of transition probability and

V' is the value function.

In case of using a HAL based @y\(s;, a;), the equation (1) becomes:

Arandom otherwise
5)

There’s az state which causes the maximum err@e € S,Vs € S, Ly(z) >
Ly (s). For thisz state, consider the optimal action= 7*(z) and the suitable action by
the heuristid = 7. As the action choice is made by aiGreedypolicy, b must seem at
least as good as

7T(S ) . {arg maXg, [T(St, at) + VZSHIeS T(St, Qg, 3t+1)V*(5t+1) + gHt(Sta at)ﬁ] if ¢ <np,
) =

(z,a) +7 Z (2,0, 5041)V* (5141) + EHi(2,a)" <

(2.0) +7 Y T(2,b,5001)V*(s011) + EHi(2,b)°

St+1E€S

r(z,a) —r(z,b) <y Z (2,0, 5041) V" (5¢41) +§Ht(z,b)ﬁ

s5t41€S

— (7 Y2 Tz a,50)V (5001) + EHi(2,0)

5t+1€S
r(z,a) —r(z,b) < & [Hi(z,b) — Hy(z,a)"]
+ Z (2,0, 8141)V*(8041) — T(2, @, $¢11)V*(S141)] - (6)

St+1E€S

The maximum error is:

Ly(z) =7r(z,a) —r(z,b)
T Z (z,a,80:1)V*(s141) = T(2,0, 841) V™ (S441)] (7

St+1€S



Substituting the equation (6) in (7), we have:

Ly(z) <¢ [Ht(z, b)? — Hy(z }
4ﬂ/z:H@bSHOV@HQ—T@ﬂﬁHJW@HM

(8)
+7 Z [T'(z, @, se01) V7 (s141) = T(2, 0, 5001) V" (5141)]

Ly(z) < € [Hy(z, b)? — Hy(2,a) }

Finally, as actiorb is chosen instead of actian H,(z,b)’ > H,(z,a)". As the value of
H is limited by b, < H(sy, a1) < hinas, We can conclude:

LH(St> < g [ max hﬁ ] vst eSS 0O (9)

man

This proof is similar to the one presented in [Singh, 19943], where it's demonstrated
that small errors on the approaching of the of the functidnesaan’t produce arbitrarily
bad results in a system based on policy iterations when tienaare selected ingreedy
way.

2nd. Case F(St, CLt) = T(St, CLt) + ’}/V(StJrl).

The reinforcement learning algorithms based on a policgtiten which directly
use of the value functiofr (s;) to compute the policy, maximize the reinforcement sum
r(s,m(s)) with the valuel’"(s") of the succeeding state (or its estimate), discounted of
the~y:

' (s) — argmazxy(s,) |7(se, w(st)) + Z (50, 7(5¢), $e41)V ™ (5041) | - (20)

St+1€S

A HAL based on this class of algorithms chooses the policygddilowed from the
equation:

7' (s1) = argmaz (s, |7(s¢, w(s1)) + Z (5¢,7(8¢), 8441)V ™ (8041) + EH (54, 7(5))?
5t+1€S
(11)
We notice that the equation (11) is similar to the equationafid that every argument
used to prove this theorem wheéfs;, a;) = Q(s;, a;) is also valid to this casé.]

Only a small algebraic manipulation is needed to prove tmaetrorLy(s;) has
a defined upper limit in case the functienis defined containing one of the four basic
operations (trivial in case of subtraction). For other fimts, this prove may not be
possible.

As a general rule, the value of the heuriskig(s;, a;) must be higher than the
variation betweerk(s;, a) for a similars, € S, so it can influence the choice of actions
and it must be as low as possible to minimize the efrgfs,). In case the function
used is the addition operation, the heuristic can be defised a

max, [F(s;, a)] — F(ss, a) +1  sea; = w(sy),

. 12)
0 otherwise

Ht(St, at) = {



wheren, is a low value andr? (s;) is the heuristic for the obtained policy from a
method "Heuristic from X”.

For instance, if a state has 4 possible actions, the valuesgfa) calculated for
the actions are [1,0 1,1 1,2 0,9] and we wish the selectedragithe first one, we
can use; = 0,01, resulting inH (s;, 1) = 0,21 and equal to zero for the other actions.
The heuristic can be defined in a similar way for other functio

The functionx is the last item introduced by the formulation presentedhim t
equation 1. Although any function which works over real nensb(because both the
function value such the heuristic have real values) andumresl values belonging to an
ordered set may be used, the most used ones are addition dmplicaion. The use
of addition is particularly interesting because it allowsamalysis of the influence of the
values ofH in a way similar to the one which is made in informed searclorigm (as
the A* [Russell and Norvig, 1995]), allowing a the reuse of manyhef dbtained results
for this algorithm.

Finally, the multiplication may also be used instead of tiectiont<. For ins-
tance, the rule of state transition Aht Colony SysterfjBonabeau et al., 2000]) uses the
multiplication, whereH (s, a;) is pondered by thg constant. However, a more detailed
analysis shows that the use of multiplication may expeggroblems when the estimate
function F(s;, a;) may admit positive and negative values. In this case, whemulé-
ply F(s;, a;) by an heuristic, we can’t be sure if the action importance widrease or
decrease.

4. The methods “Heuristic from X”

One of the main questions of this paper is how to find out, initealdearning state, the

policy which must be used, speeding it up. From the class of ldiyorithms and the

analysis of the heuristic function done in previous segtthrs question means how to
define the heuristic function.

In this paper, we defined the preliminary situation as thewoieh takes a small
percent of the necessary time for the system to convergetél@ime, for instance) and
corresponds to the phase where the learning process onaufaster way. The definition
of a preliminary situation depends on the domain of the systpplication. For instance,
in the domain of the robotic navigation, we can extract ariulgesuristic from the mo-
ment when the robot is receiving environment reinforcemsteatter hitting a wall, use a
heuristic the policy which leads the robot away from it. Tlee@d possible hypothesis
in the beginning of this paper is that there’s a large amofimethods and algorithms
which can be used to define the heuristic function. Theseadstban be divided in two
classes:

e based on the cases constructed previously, these algeritlork in two phases:
the first one, which learns cases and the second one, whiskg@ases previ-
ously analyzed. The main problem of these methods is to fiatufes of the
system which allow to index a database and which may be egttdiom an ini-
tial situation.

e without a previous databasen-line): these methods may use self knowledge
before of the domain to estimate the heuristic, or do it frast jobserving an
execution of the system.

As a general rule, the methods “Heuristic from X” work in twages. The first
one, which withdraws information about the structure froméstimate of the domain and
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Figura 2: General method plan “Heuristic from X”.

the second one, which finds the heuristic for the policy indtime way from a database
- using the information extracted from These stages were call&tructure Extraction
andHeuristic Compositionrespectively (see figure 2).

As an example of a method based in cases, a very promisingpthesthHeuristic
from V differences”, which uses the gradient of the valuecfion to find, in a base of
cases constructed previously, a policy which may be use@asshic to a new problem.
6

A possibleon-line method — which uses no database — is called “Heuristic from
Negative Reinforcements”. In it, an auxiliary memory cdlle~ (s, a;) stores the nega-
tive reinforcements received in each state-action paianienvironment where there are
walls, and which a robot receives negative reinforcemeal ¢éae it hits one of them,
the R~ table indicates the map of a static environment in a shoe.tifrom this model
we can estimate a heuristic which always leads the roboid®utise rooms, moves away
from the obstacles and corners, etc.

Finally, the method definition “Heuristic from X” depends tive designer kno-
wledge about a domain.

5. TheHeuristically Accelerated Q—Learninglgorithm

For being the most popular algorithm and having a large amotidata in literature
for the fulfilment of a comparative evaluation, the first @ighm of HAL class to be
implemented is an extension of tiz-Learningalgorithm([Watkins, 1989]). This new
algorithm is namedHeuristically Accelerated Q—Learnirgjgorithm — HAQL algorithm.

For its implementation, it's necessary to define the rulénefdtate transition and
the method to be used to update the heuristic. The rule & staisition used is a change
of thee — Greedy rule standard of th@—-Learningwhich contains the heuristic function
as a simple summation (with = 1) to the value of the function value-function. Thus, the
rule of state transition in the HAQL is given by:

~

Qa ) H ) if S )
() = {arg max,, [Q(st ay) + EHy(se, ar) q p (13)
Arandom OtherWISe

The value of the heuristic used in HAQL is defined by instag¢ire equation 12.
The used heuristic is defined as:

maXg Q(Su a) - Q(Sn at) +n ifa = ﬂ-H(St)a

. (14)
0 otherwise

H(sy,ay) = {

The convergence of this algorithm is guaranteed by 2. Howdve upper limit
for the error can be defined better.

5This method is based on the work of[Drummond, 2002].



Lemma 1 When using the algorithm HAQL for the solution of a deterstiniMDP with
a set of finite states and actions, limited rewa(ds;, a;) rmin < 7(St; @) < Tinazs
discount factory the way0 < ~ < 1, the maximum value whidf(s;, a;) may reach is

equal tor,,... /(1 — 7).

Proof: From the equation which defines the cumulative value distsafrom the Model
of the Infinite Horizon and the definition of the Value-Actigh we have:

V7 (st) =1+ Yregn + V1o + . (15)
Q" (5¢,a) = re + YV (5¢41)
=T+ e Ve

o0
i
= E Y Tti
i=0

wherer,; is the reinforcement sequence received fromstheate, using the policy in
a repeated way to select actions anid the discount factor, with < v < 1.

(16)

Admitting, at best, all received reinforcements; = r,,... in all steps, we have:

maXQ(Stu at) = Thmaz + YT mazx + ”Yszax + ...
— (17)
= Z Y Tmazx
i=0

Finally, on the limit whem — oo
n—1

max Q (s, a;) = lim Zvirmm
s (18)
,rmCLZE D

I—x

In case the positive reinforcement is attached only whenigro the final
state,r, < 7. and there are no reinforcements#dn> ¢ + 1, we conclude that
V(St, at)7 maXQ(Stu at) S Tmax -

Lemma 2 When using the algorithm HAQL for the solution of a deterstiniMDP with
a group of finite states and actions, limited rewalds;, a;) 7min < 7(St, ) < Tinaz,
discount factory the way0 < v < 1, the minimum value whic®(s;, a;) may admit is
equal tor,;,, /(1 — 7).

Proof. Admitting, at worst, all received reinforcements; = r,.;, in all steps, exclu-
ding the last one, which receives the maximum reinforcerteathieve its goal, we can
conclude that:

n

min Q(St7 a’t) = Tmin + Vmin + ’ermin +... .+ _1Tmin + 'Yn?“max
n—1
‘ (19)
- Z ’YZT’mm + ’ynrmam
=0
On the limit whenn — oo

n—1
min Q(Sta at) = lim [ ’Vzrmin + ’Vnrmaa:]

n—oo

=0
n—1
= Tmin [lim Zvi (20)
n—o00 P
_ Tmin (]

1=y
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Figura 3: The s; state has both maximum values and minimum for the function
value-action Q.

Theorem 4 When using the algorithm HAQL for the solution of a deterstiniMDP
with a group of finite states and actions, limited rewafds;, a;) rmin < (8¢, a1) < Tmaz,
discount factory the way0 < v < 1, the maximum error caused by the use of a heuristic
is limited upper by

Tmaz — Tmin
za@asg{—q————+ﬂ. (21)
-7
Proof: From the equation (14), it's possible to derive:
Popin = 0 whena, # 7 (s,), e
(22)

Rmas = MAaxX Q(st, a) — Q(st, a;)+n  whena; = WH(St).

The valueh,,,,, occurs when botimax Q(s;, a;) andmin Q(s;, a;), Vs; € S,a; € A are
found under the samg state. In this case

T'max T'min
[ — +n. (23)
11—y 1-—v
Substitutingh, .., andh,.;, on the result of theorem 3, we have:

Liu(s) <€’ —hP

max mzn]

Tmaz Tmin

< — -0

—5{1—7 Ty ] (24)
Tmaz Tmin

Sf{ T +77].D

Figure 3 presents an example of configuration where beik Q(s;,a;) and
min Q(s;, a;) are found under the samg state. In it,s, state is the final state; mo-
ving to s, generates a,,,, reward and any other movement generates,;a reward. In
this s; state there is a chance of occurrihgadlocksbecause the system can’t reduce the
value of ) to eliminate the influence of a bad heuristic. The systemavilyy converge
after ad time without the influence of the heuristic enough for theoetr;(s;) to be
corrected by the learning process.

The complete HAQL algorithm is presented on table 2. We maicedahat the
only changes which refer to the use of the heuristic fundirihe choice of the action
to be executed and the existence of a step of updating th&édarn, (s;, a;).

Although the functiorH, (s, a;) can be derived using any method “Heuristic from
X”, agood method increases the speedup and generalitysaigpprithm. On next section
the method “Heuristic from X” used in this paper is presented



Tabela 2: The HAQL algorithm.

Initialize Q(s, a).

Repeat:

Visit the s state.

Select an action using the rule of state transition.

Receive the reinforcements, a) and notice the next staté
Update the values af/;(s, a) using a method?7{ from X".
Update the values @)(s, a) according to the rule of updating
Q(s,a) — Q(s,a) + a[r(s,a) + ymaxy Q(s',d’) — Q(s, a)l.
Update thes < s’ state.

Until some stop criteria is reached.

where:s = s;, 8 = s;11,a = a; €ad’ = az ;1.

6. The method “Heuristic from Policy”

Along with HAQL a method “Heuristic from X” named “Heuristitcom policy” (H-de-

) was used. This method is composed of two phases: the firstdrects information
about the structure of the environment from policy, and dwad one makes the heuristic
for the policy.

The first phase interactively builds the model of the enviment: from the policy
m(s¢) in a timet, we use the algorithm of Dynamic Programming called Polieyation
[Ribeiro, 2002] to calculate the function valdg (s;) in the timet. This is done be-
cause the policy converges faster than the value functimhbacause of this it generates
information of better quality than the direct uselgs;.

From V", the gradient of the value functidiiV;" is calculated. In case of a two
dimensional environment (as in the robotic navigation dopahis step corresponds to
extract the edges which mark the places where there’s a bigtiea on the value of
V™ (s¢), indicating that some feature blocks the execution of onaare actions. In case
of robotic navigation, the edges can indicate the walls wlibe robot won't pass. Fi-
nally, the edges matrix is binarized, using a limiariza@gorithm. The resulting matrix
corresponds to the map of the environment.

From the model of the environment, the second phase cHieatistic Backpro-
pagationmakes the heuristic.

It propagates from a final state, the correct policies wheadlto that state. For
instance, when coming to the terminal state, we define thadtieuas composed by the
actions which lead from immediately previous states, to tdsiminal state. In a following
iteration, this heuristic is propagated to the predecessithe states which already have
a defined heuristic.

Theorem 5 For a deterministic MDP which model is known, the HeuristacBpropaga-
tion algorithm generates a optimal policy.

Proof: As this algorithm is a simple application of the Dynamic ghamming algorithm
[Bertsekas, 1987], the theorem of Bellman itself proves st@tement]

The Heuristic Backpropagation is an algorithm very simitathe Dynamic Pro-
gramming algorithm [Bertsekas, 1987]. In case where ther@mment is completely
known, both of them work the same way. In case where only gaheoenvironment is
known, the backpropagation is done only for the known st&esthe example of robotic



Figura 4: room with walls (represented by dark lines) discre tized in a grid of sta-
tes (represented by softer lines).

mapping, the model of the environment is gradually done.is)dase, the backpropaga-
tion can be done only on the parts of the environment whiclaleady mapped.

The results of complete implementation of this algorithrii lae presented in the
next section.

7. Experiments in the domain of mobile robots

Due to the fact that the reinforcement learning requiresgelamount of training episo-
des, the HAQL algorithm has been evaluated, so far, only imalated domain.

In these experiments, a domain where a mobile robot can nmdeeir directions
(North, South, East and West) was used in an environmentwalls (figure 4). The
domain is discretized in a grid with N x M positions to a robehich can perform four
actions: N, S, E, W. The walls are represented by states fatvthe robot can’'t move.
This domain is well-known, having been used in the experimeh[Drummond, 2002]
e [Foster and Dayan, 2002].

It is not difficult to find the optimal policy to this environme Figure 5 presents
the result of the algorithm of Policy Iteration [Kaelblingad., 1996, Bertsekas, 1987],
which solved the problem in 38 iterations.

Two experiments were done using the HAQL with Heuristic frBwlicy in this
domain: navigation with repositioning goal and navigatio@ new environment. In the
former, the robot learns to reach the environment of the éguand, after a certain time,
the goal is moved to other position.

Figure 6 shows the map of the environment using the methotfwdtare extrac-
tion described in section 6. Figure 7 shows that the policderfeom this map. We can
notice that neither the map nor the policy are perfect, budpite of this, they produce
good results.

The result (figures 8, 9 and 10) shows that, after the goalsigpoing (which
happens in the 5000 iteration), theQ—Learninghas to relearn all the policy, while the
HAQL converges in only one step. This happens because, ant®nment is already
known, the HAQL just makes the heuristic to the new targettjpes Also, when theQ—
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Figura 5: Optimal policy for a mobile robot in an environment with 25 x 25 states
and some walls. Double arrows mean that, in a similar state, i t makes
no difference which one of the two actions to take.

Figura 6: Environment found for the goal repositioning prob lem to figure 5, using
the method described in section 6.
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Figura 7: heuristic implemented for the goal repositioning problem using the
method described on section 6.

Learningis used without the reinitialization of the table Q, the systakes about 490506
steps, but if the reinitialization is done, it takes only 712

The second experiment takes the Heuristic from Policy ntetbpon the 100
iteration, find the map of the environment and speedup theileg process. The result
(figure 11) shows that, while th@—Learninglearns the policy, the HAQL converges to
the optimal policy after the speeding up. It’s interestiogbtice that in the moment of
speeding up, there’s a decrease on the agent’s performalnisas because the map of the
environment isn’t perfect and some actions pointed by theisics as good ones aren’t
really. But as the agent keeps learning, these actions areignored and the final result
is a speedup almost immediate.

All the experiments presented were encoded in C++ Languad@executed in a
Pentium 3-500MHz, with 256MB of RAM and Linux operating syist. The parameters
used in bothQ-Learningand HAQL were the same: learning rate= 0,1, v = 0,99
and the exploitation rate of 0.9. The reinforcement usee&wEd when the robot reaches
the goal state and -1 when it hits a wall and the presentettsese a mean of 100 ages.
In these similar states the Policy Iteration algorithm t8@& seconds to find the solution
presented in figure 5.

8. Conclusion and Future Works

The preliminary results obtained indicate that the apgrdac the class of algorithms
Heuristic Accelerated Learning - HAL are promising. The oé¢he Q—Learningalgo-
rithm accelerated by Policies — HAQLH-de-r — presented good results for the domain
of mobile robots.

The biggest problems found refer to the algorithm proposedhie extraction of
the problem structure. First, the necessary time for thestcoction of the map of the
environment from the policy is very high (about 45 secondsl) second, there’s the need
to know the transition probabilities to solve the linear &ipns system using dynamic
programming. Thus, this method wasn't regarded as suitaideother options are being
studied.

Among the future works which must be done for a better eveloaif this algo-
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rithm, we have:

1. study with a deeper knowledge about the behavior of thagtefunction. Espe-
cially, what is its relation with the estimate functié(s,, a,) used, what allows to
abstract which values df to use for a certain problem.

2. validate the HAQL. To do so, there’s the need to study thuilization of kno-
wledge learned before. For instance, on the simulation obkilerobot, to reuse
in other environments the policy which was learned in a gertanfiguration,
there’s the need to compose a new solution from parts ofiegisblutions. Fi-
nally, to compare this approach to the paper of [Drummon@2P@sing the same
environments proposed by him.

3. Apply the algorithm HAQL also in the domain of the car on theuntain. This
domain, very well-known in the control area, studies thetidrof a car which
must stop at the top of a mountain, from its position and spdedfeature is
nonlinearity, inexistence of rooms or straight obstackdsich generates a value
function where the borderlines are curves. It was studiefDoymmond, 2002]
and [Munos and Moore, 2002].

4. Study other methods “Heuristic from X” which use a baseases or not.
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