
The use of heuristics to speedup Reinforcement Learning

Reinaldo A. C. Bianchi1 , Carlos H. C. Ribeiro2 , Anna Helena Reali Costa1

1Laboratório de Técnicas Inteligentes – Escola Politécnica da Universidade de São Paulo
Av. Prof. Luciano Gualberto, 158, tv. 3 – 05508-900 São Paulo, SP

2Instituto Tecnológico de Aeronáutica
Praça Mal. Eduardo Gomes, 50 – 12228-900 – São José dos Campos – SP

reinaldo.bianchi@poli.usp.br, carlos@ita.br, anna.reali@poli.usp.br

Abstract. This work presents a new class of algorithms that allows the use of
heuristics based on policy to speed up reinforcement learning algorithms. This
class of algorithms, called “Heuristically Accelerated Learning” is modeled by
a convenient mathematical formalism known as Markov Decision Processes. An
heuristic functionH that influences the choice of the actions is defined in order
to model the HALs. This heuristic is updated during the learning process. This
work also proposes automatic methods for the extraction of the heuristic func-
tionH from the problem domain or from the learning process, called“Heuristic
from X”. A new algorithm called Heuristically Accelerated Q–Learning is pro-
posed to validate this work. It implements a HAL by extendingthe well-known
RL algorithm Q–Learning. Finally, we show some experimental results that al-
low to conclude that even a very simple heuristic results in asignificant increase
of the performance of the reinforcement learning algorithmused. A list of future
work is then presented.

1. Introduction

The main problem approached in this paper is the speedup of the Reinforcement Learning
(RL) aiming its use in mobile and autonomous robotic agents acting in complex environ-
ments. We wish to keep the RL algorithms advantages, including the convergence for the
stationery policy, the free choice of actions to be taken, and the unsupervised learning,
minimizing its main disadvantage: the time necessary for learning.

The main hypothesis of this paper is that there is a class of RLalgorithms that
allows the use of heuristics to approach the problem of learning speedup. This class of
algorithms is calledHeuristically Accelerated Learning– (HAL).

The rest of this paper describes this proposal deeply: section 2 describes the meta-
algorithm of ”Heuristically Accelerated Learning”; 3 describes the formalization of HALs
using a heuristicH function and section 4 describes the algorithms used to define the
heuristic function, named ”Heuristic from X”; sections 5 and 6 describe a complete im-
plementation of an algorithm of HAL class based on Q-Learning, the Heuristically Acce-
lerated Q-Learning – HAQL; finally 7 describes the domain where this proposal is being
evaluated and the results obtained.

2. The HAL Meta-Algorithm

In a more formal way, a HAL class algorithm can be defined as a way of solving a mode-
ling problem by a MDP which definitely sees the heuristicH : S × A → ℜ to influence

the actions choice, by the agent during its learning.Ht(st, at) defines the heuristic which
indicates the importance of performing the actionat in st state.

The heuristic function is strongly associated to the policy: every heuristic indicates
that an action must be taken despite other. This way, we can say that the heuristic function
defines a ”Heuristic Policy”, that is, an attempt policy usedto accelerate the learning
process.

As the heuristic is used only for the choice of the action to betaken, this algorithms
class is different from the RL algorithms proposed so far just for the way the explanation is
carried out. As the RL algorithm operation isn’t modified (for instance, without changing
the updating of the functionQ), this proposal allows many of the obtained conclusions
of RL algorithms to remain valid for the HALs.1 The use of heuristic function made
by HALs explores an important characteristic of some RL algorithms: the free choice of
training actions. The consequence of this user is that a suitable heuristics speeds up the
learning process, and if the heuristic isn’t suitable, the result is a delay which doesn’t stop
the system from converging to a optimal value (in case of the deterministic systems).

Another important HALs feature is that the heuristic function can be modified on
each iteration. This allows the speedup to be used in a premature stage of Learning and
modified each time more information about the system becomesavailable.

The class of the algorithms ”Heuristically Accelerated Learning”can be divided
in two sub-classes: the one which uses the knowledge about the domain to abstract a
heuristic and the ones which use clues that exist in the learning process itself.

In the first case, the heuristic is learned from the states noticed by the agent. This
learning process can be made by generic techniques or ”ad hoc”methods. Like this, the
heuristic is a way of knowledge generalization which we haveconcerning the domain.2.

In the second case, the heuristic is extracted from data of the learning process
itself. Among these clues, two of them are more relevant: thevalue function and the
system policy in a certain moment.

A second hypothesis made in this paper is that these must be a large amount of
methods which can be used to learn the heuristic function. Since these are many domains
in which RL can be used and many ways of extracting knowledge from a domain, this
hypothesis is easily validated. The learning methods of theheuristic policy are named
“Heuristic from X” ”.

The generic procedure which defines the operation of the ”Heuristically Accele-
rated Learning”can be described as a meta-algorithm. This procedure involves four steps
repeated sequentially until some stop criteria is achieved. This meta-algorithm is descri-
bed in table 1.3

Any algorithm that uses heuristics to select an action, which can be estimated
on-line is an instance of the meta-algorithm HAL. This way, we can build algorithms
of this class from most reinforcement learning algorithms.As an example in section 5
theHeuristically Accelerated Q–Learning, will be presented, extending the Q-Learning

1We can say that the reinforcement learning algorithms are a subgroup of HAL algorithms, where the
influence of heuristic is always null.

2As in the optimization by ant colonies, [Bonabeau et al., 2000] which uses the distance of the cities as
heuristic.

3This nomenclature is made because as there are many techniques to estimate the shape of the objects in
the area of Computational Vision (CV), called“Shape from X”, here there are also many ways to estimate
the heuristic. In the “Shape from X” the individual techniques are named as “Shape from Shading”, “Shape
from Texture”, “Shape from Stereo’ [Nalwa, 1993]. .

Tabela 1: The meta-algorithm ”Heuristically Accelerated L earning”

Initialize the estimate of the value function.
Repeat:
Being underst state select an action using a
combination of the heuristic with a suitable value function.
Receive the reinforcementr(s, a) and notice the next states′.
Update the heuristic functionHt(s, a) using a suitable
“method Heuristic from X”
Update the values of the value function used.
Update the states← s′.
Until some stop criteria is achieved.

where:s = st, s′ = st+1 anda = at.

algorithm [Watkins, 1989].

The idea of using heuristics with a learning algorithm has already been approa-
ched by other authors, as in the approaching of Optimizationby Ant Colony presented
in [Gambardella and Dorigo, 1995, Bonabeau et al., 2000]. However, the possibilities of
this use weren’t properly explored yet. Particularly, the use of heuristics extracted fol-
lowing a similar methodology to the one proposed by [Drummond, 2002] seems very
promising. Afterwards, each element of the HAL meta-algorithm is analyzed deeply.

3. The Heuristic function H

The heuristic function appears in the context of this paper as the way to use the knowledge
about the policy of an agent to accelerate the learning process. This knowledge can be
derived directly from the domain or built from existing clues in the learning process itself.

The heuristic function is used only in the transition of states which chooses the
actionat to be taken in the statest. This way, we can use, to this class of algorithms, the
same formalism used on the RL. A strategy to the action choiceis the random exploration
ǫ − Greedy, in which not only the estimate of the probability of transition functionsT ,
and the rewardR, but also the functionH is bore in mind. The rule of this transition
states is given by:

π(st) =

{

arg maxat

[

F(st, at) ⊲⊳ ξHt(st, at)
β
]

if q ≤ p,

arandom otherwise,
(1)

where:

• F : S×A → ℜ: is an estimate of a value function which describes the accumula-
ted expected reward. For instance, ifF(st, at) ≡ Q̂(st, at) we have an algorithm si-
milar to theQ–Learning. Another option is to useF(st, at) ≡ r(st, at)+γV̂ (st+1),
resulting in an extension of the algorithm of Temporal Differences[Sutton, 1988].
• H : S × A → ℜ: is the heuristic function, which influences the choice of action,

defining the importance of executing the actionat at being on statest. The notet
in heuristic function indicates that it can be different in two different moments.
• ⊲⊳: is a mathematical function, which must operate on numbers and produce a

value belonging to a ordered set (which the operation of maximization can be
applied).

• ξ andβ: are real variables used to weight the influence of the heuristic function.
• q is a value chosen in an random way with uniform probability in[0,1] andp

(0 ≤ p ≤ 1) is the parameter which defines the exploration/exploitation ratio: the
bigger the value ofp, the smaller is the probability of an random choice.
• arandom is an random action selected among the executable actions instatest.

The first consequence of this formulation is that ifξ or β reduce with time more
quickly than the learning rate, the convergence evidences existing for the RL algorithms
remain valid in this approach. UsingQ–Learningas an example (⊲⊳ = addition), if the
decrease ofξ is faster than that of the learning rateα, the algorithm converges. Afterwords
two theorems will be presented to prove this statement.

Theorem 1 The use of heuristics in a HAL acting in a deterministic MDP, with groups
of finite states and actions, limited rewards(∀st, at) rmin ≤ r(st, at) ≤ rmax, dis-
count factorγ the way0 ≤ γ < 1 and used values on the heuristic function limited
(∀st, at) hmin ≤ H(st, at) ≤ hmax, doesn’t produce infinite values on the approach of
value function.

Proof: In HAL algorithms, the updating of the approach doesn’t depend on the value of
the heuristic clearly. Thus, the influence that the heuristic has in theF(st, at) is caused by
the differences which may occur during the exploration/exploitation.

Depending on the heuristic correctness, the exploration may have two effects: if
the heuristicHt(st, at) estimates the grid policy perfectly, the exploration is reduced,
because the agent always tends to follow less reinforcements, but there’s no effect which
produces infinite values inF(st, at).

If the heuristicHt(st, at) is incorrect, the agent will explore states which it
wouldn’t without its influence. The only possibility where an infinite value would be
generated in the approach of the value function is the one which the agent is blocked in a
similar state (indeadlock), always executing the same action.

However, in this case, the action executed by the agent doesn’t change the esti-
mate of the value function.4 That’s because, if the action changed F, after a finite number
of actions the heuristic, which limited byhmin ≤ H(st, at) ≤ hmax, would not be consi-
dered. The approach of the value function would be so unfavorable that, even if with the
influence of the heuristic, this action wouldn’t be chosen anymore leaving thedeadlock5.
�

Theorem 2 If the technique of Reinforcement Learning in which a HAL is based conver-
ges independently of the initialization, the HAL also converges.

Proof: In most convergence tests of the algorithms of reinforcement learning, the only
restriction for the initial value of the function value approach is that they must be fi-
nite(see [Mitchell, 1997, pg. 378] for the Q-Learning, [Szepesvári and Littman, 1996]
for other models).

As the use of the heuristic doesn’t produce infinite values onthe function value
approach (theorem 1), there must be only aδt delay time between the end of the heuristic
influence (decay ofξ or β up to zero) and the decrease of the learning rateα, where this
δt is enough time for the learning, to occur, which the HAL converges.�

4This can occur because the value ofF is already on the lower possible bound for that action or because
the action doesn’t generate rewards.

5This theorem doesn’t prove that the system never is indeadlock, but even if this happens, the values of
F(st, at) won’t tend to infinite

1

Influence

0, 0

Learning rate

Heuristic

Time
t t + δ

Figura 1: If δ is enough for learning, the system converges.

In the extreme case, where the learning rate never decays (δ = ∞), this result
is trivial. In the case where both the heuristic influence andthe learning rate decay, the
heuristic influence must end before the learning itself. Figure 1 shows an example where
this happens.

These two theorems restrict the value which can be used on theheuristic for finite
numbers. The next theorem allows limiting the values to be used in the heuristic function
even more accurately.

Definition 1 The error caused in the approach of the value function due to the use of the
heuristic on learning algorithm is defined by

LH(st) = F(st, π
∗)− F(st, π

H), ∀st ∈ S, (2)

whereF(st, π
H) is the estimate of the value function calculated from the suitable policy

by heuristic,πH .

Corollary 1 In a system in valance on the optimal value, the use of correctheuristic
won’t cause any changes in the system.

Proof: Direct consequence of the equation 2,because in the cause when the heuristic
makes the used policy coincide with the optimal policy, we have πH = π∗, F(st, πH) =
F(st, π

∗) and therefore the errorLH(st) = 0. � The theorem presented afterwards defines
the superior bound for the errorLH(st), ∀st ∈ S.

Theorem 3 The maximum error caused by the use of a limited heuristic byhmin ≤

H(st, at) ≤ hmax in a HAL acting in a deterministic MDP, with sets of finite states and
actions, limited rewards(∀st, at) rmin ≤ r(st, at) ≤ rmax, discount factorγ the way
0 ≤ γ < 1 and which function⊲⊳ is used is the sum is superior bounded by:

LH(st) ≤ ξ [hβ
max − hβ

min]. (3)

Proof: This proof will be done in parts, becauseF(xt) can be defined in two different
ways:

1st. Case: F(st, at) ≡ Q(st, at).

The value functionQ(st, at) can be defined as [Ribeiro, 2002]:

Q(st, at) = r(st, at) + γ
∑

st+1∈S

T (st, at, st+1)V
∗(st+1). (4)

where:

• st is the present state,
• at is the action performed inst,
• st+1 is the state resulting of applying the actionat at being inst,
• T (st, at, st+1) is the function of transition probability and
• V is the value function.

In case of using a HAL based onQ(st, at), the equation (1) becomes:

π(st) =

{

arg maxat

[

r(st, at) + γ
∑

st+1∈S
T (st, at, st+1)V

∗(st+1) + ξHt(st, at)
β
]

if q ≤ p,

arandom otherwise.
(5)

There’s az state which causes the maximum error:∃z ∈ S, ∀s ∈ S, LH(z) ≥
LH(s). For thisz state, consider the optimal actiona = π∗(z) and the suitable action by
the heuristicb = πH . As the action choice is made by anǫ-Greedypolicy, b must seem at
least as good asa:

r(z, a) + γ
∑

st+1∈S

T (z, a, st+1)V
∗(st+1) + ξHt(z, a)β ≤

r(z, b) + γ
∑

st+1∈S

T (z, b, st+1)V
∗(st+1) + ξHt(z, b)

β

r(z, a)− r(z, b) ≤γ
∑

st+1∈S

T (z, b, st+1)V
∗(st+1) + ξHt(z, b)

β

−

γ
∑

st+1∈S

T (z, a, st+1)V
∗(st+1) + ξHt(z, a)β

r(z, a)− r(z, b) ≤ ξ
[

Ht(z, b)
β −Ht(z, a)β

]

+ γ
∑

st+1∈S

[T (z, b, st+1)V
∗(st+1)− T (z, a, st+1)V

∗(st+1)] . (6)

The maximum error is:

LH(z) = F(z, π∗)− F(z, πH) = Q(z, a)−Q(z, b)

LH(z) = r(z, a) + γ
∑

st+1∈S

T (z, a, st+1)V
∗(st+1)

−

r(z, b) + γ
∑

st+1∈S

T (z, b, st+1)V
∗(st+1)

LH(z) = r(z, a)− r(z, b)

+ γ
∑

st+1∈S

[T (z, a, st+1)V
∗(st+1)− T (z, b, st+1)V

∗(st+1)] (7)

Substituting the equation (6) in (7), we have:

LH(z) ≤ ξ
[

Ht(z, b)
β −Ht(z, a)β

]

+ γ
∑

st+1∈S

[T (z, b, st+1)V
∗(st+1)− T (z, a, st+1)V

∗(st+1)]

+ γ
∑

st+1∈S

[T (z, a, st+1)V
∗(st+1)− T (z, b, st+1)V

∗(st+1)]

LH(z) ≤ ξ
[

Ht(z, b)
β −Ht(z, a)β

]

.

(8)

Finally, as actionb is chosen instead of actiona, Ht(z, b)
β ≥ Ht(z, a)β. As the value of

H is limited byhmin ≤ H(st, at) ≤ hmax, we can conclude:

LH(st) ≤ ξ [hβ
max − hβ

min], ∀st ∈ S. � (9)

This proof is similar to the one presented in [Singh, 1994, p.53], where it’s demonstrated
that small errors on the approaching of the of the function value can’t produce arbitrarily
bad results in a system based on policy iterations when the actions are selected in agreedy
way.

2nd. Case: F(st, at) ≡ r(st, at) + γV̂ (st+1).

The reinforcement learning algorithms based on a policy iteration which directly
use of the value functionV (st) to compute the policy, maximize the reinforcement sum
r(s, π(s)) with the valueV π(s′) of the succeeding state (or its estimate), discounted of
theγ:

π′(st)← argmaxπ(st)

r(st, π(st)) + γ
∑

st+1∈S

T (st, π(st), st+1)V
π(st+1)

 . (10)

A HAL based on this class of algorithms chooses the policy to be followed from the
equation:

π′(st)← argmaxπ(st)

r(st, π(st)) + γ
∑

st+1∈S

T (st, π(st), st+1)V
π(st+1) + ξH(st, π(st))

β

 .

(11)
We notice that the equation (11) is similar to the equation (5) and that every argument
used to prove this theorem whenF(st, at) ≡ Q(st, at) is also valid to this case.�

Only a small algebraic manipulation is needed to prove that the errorLH(st) has
a defined upper limit in case the function⊲⊳ is defined containing one of the four basic
operations (trivial in case of subtraction). For other functions, this prove may not be
possible.

As a general rule, the value of the heuristicHt(st, at) must be higher than the
variation betweenF(st, a) for a similarst ∈ S, so it can influence the choice of actions
and it must be as low as possible to minimize the errorLH(st). In case the function⊲⊳
used is the addition operation, the heuristic can be defined as:

Ht(st, at) =

{

maxa [F(st, a)]− F(st, at) + η seat = πH(st),

0 otherwise.
(12)

whereη is a low value andπH(st) is the heuristic for the obtained policy from a
method ”Heuristic from X”.

For instance, if a state has 4 possible actions, the values ofF(st, a) calculated for
the actions are [1,0 1,1 1,2 0,9] and we wish the selected action is the first one, we
can useη = 0, 01, resulting inH(st, 1) = 0, 21 and equal to zero for the other actions.
The heuristic can be defined in a similar way for other function ⊲⊳.

The function⊲⊳ is the last item introduced by the formulation presented in the
equation 1. Although any function which works over real numbers (because both the
function value such the heuristic have real values) and produces values belonging to an
ordered set may be used, the most used ones are addition and multiplication. The use
of addition is particularly interesting because it allows an analysis of the influence of the
values ofH in a way similar to the one which is made in informed search algorithm (as
theA∗ [Russell and Norvig, 1995]), allowing a the reuse of many of the obtained results
for this algorithm.

Finally, the multiplication may also be used instead of the function⊲⊳. For ins-
tance, the rule of state transition ofAnt Colony System([Bonabeau et al., 2000]) uses the
multiplication, whereH(st, at) is pondered by theβ constant. However, a more detailed
analysis shows that the use of multiplication may experience problems when the estimate
functionF(st, at) may admit positive and negative values. In this case, when wemulti-
ply F(st, at) by an heuristic, we can’t be sure if the action importance will increase or
decrease.

4. The methods “Heuristic from X”

One of the main questions of this paper is how to find out, in a initial learning state, the
policy which must be used, speeding it up. From the class of HAL algorithms and the
analysis of the heuristic function done in previous section, this question means how to
define the heuristic function.

In this paper, we defined the preliminary situation as the onewhich takes a small
percent of the necessary time for the system to converge (10total time, for instance) and
corresponds to the phase where the learning process occurs in a faster way. The definition
of a preliminary situation depends on the domain of the system application. For instance,
in the domain of the robotic navigation, we can extract an useful heuristic from the mo-
ment when the robot is receiving environment reinforcements: after hitting a wall, use a
heuristic the policy which leads the robot away from it. The second possible hypothesis
in the beginning of this paper is that there’s a large amount of methods and algorithms
which can be used to define the heuristic function. These methods can be divided in two
classes:

• based on the cases constructed previously, these algorithms work in two phases:
the first one, which learns cases and the second one, which reuses cases previ-
ously analyzed. The main problem of these methods is to find features of the
system which allow to index a database and which may be extracted from an ini-
tial situation.
• without a previous database (on-line): these methods may use self knowledge

before of the domain to estimate the heuristic, or do it from just observing an
execution of the system.

As a general rule, the methods “Heuristic from X” work in two stages. The first
one, which withdraws information about the structure from the estimate of the domain and

 of the

Value Function

Heuristic

Approximation
Structure

Domain

Information Heuristic

CompositionExtraction

Figura 2: General method plan “Heuristic from X”.

the second one, which finds the heuristic for the policy in an on-line way from a database
- using the information extracted fromF. These stages were calledStructure Extraction
andHeuristic Composition, respectively (see figure 2).

As an example of a method based in cases, a very promising method is “Heuristic
from V differences”, which uses the gradient of the value function to find, in a base of
cases constructed previously, a policy which may be used as heuristic to a new problem.
6.

A possibleon-linemethod – which uses no database – is called “Heuristic from
Negative Reinforcements”. In it, an auxiliary memory called R−(st, at) stores the nega-
tive reinforcements received in each state-action pair. Inan environment where there are
walls, and which a robot receives negative reinforcement each time it hits one of them,
theR− table indicates the map of a static environment in a short time. From this model
we can estimate a heuristic which always leads the robot outside the rooms, moves away
from the obstacles and corners, etc.

Finally, the method definition “Heuristic from X” depends onthe designer kno-
wledge about a domain.

5. TheHeuristically Accelerated Q–Learningalgorithm

For being the most popular algorithm and having a large amount of data in literature
for the fulfillment of a comparative evaluation, the first algorithm of HAL class to be
implemented is an extension of theQ–Learningalgorithm([Watkins, 1989]). This new
algorithm is namedHeuristically Accelerated Q–Learningalgorithm – HAQL algorithm.

For its implementation, it’s necessary to define the rule of the state transition and
the method to be used to update the heuristic. The rule of state transition used is a change
of theǫ−Greedy rule standard of theQ–Learningwhich contains the heuristic function
as a simple summation (withβ = 1) to the value of the function value-function. Thus, the
rule of state transition in the HAQL is given by:

π(st) =

{

arg maxat

[

Q̂(st, at) + ξHt(st, at)
]

if q ≤ p,

arandom otherwise,
(13)

The value of the heuristic used in HAQL is defined by instancing the equation 12.
The used heuristic is defined as:

H(st, at) =

{

maxa Q̂(st, a)− Q̂(st, at) + η if at = πH(st),

0 otherwise.
(14)

The convergence of this algorithm is guaranteed by 2. However, the upper limit
for the error can be defined better.

6This method is based on the work of[Drummond, 2002].

Lemma 1 When using the algorithm HAQL for the solution of a deterministic MDP with
a set of finite states and actions, limited rewards(∀st, at) rmin ≤ r(st, at) ≤ rmax,
discount factorγ the way0 ≤ γ < 1, the maximum value whichQ(st, at) may reach is
equal tormax/(1− γ).

Proof: From the equation which defines the cumulative value discounted from the Model
of the Infinite Horizon and the definition of the Value-ActionQ, we have:

V π(st) = rt + γrt+1 + γ2rt+2 + . . . (15)

Q∗(st, at) = rt + γV ∗(st+1)

= rt + γrt+1 + γ2rt+2 + . . .

=
∞

∑

i=0

γirt+i.

(16)

wherert+i is the reinforcement sequence received from thest state, using theπ policy in
a repeated way to select actions andγ is the discount factor, with0 ≤ γ < 1.

Admitting, at best, all received reinforcementsrt+i = rmax in all steps, we have:

max Q(st, at) = rmax + γrmax + γ2rmax + . . .

=

∞
∑

i=0

γirmax

(17)

Finally, on the limit whenn→∞

max Q(st, at) = lim
n→∞

n−1
∑

i=0

γirmax

=
rmax

1− γ
�

(18)

In case the positive reinforcement is attached only when coming to the final
state,rt ≤ rmax and there are no reinforcements int ≥ t + 1, we conclude that
∀(st, at), max Q(st, at) ≤ rmax.

Lemma 2 When using the algorithm HAQL for the solution of a deterministic MDP with
a group of finite states and actions, limited rewards(∀st, at) rmin ≤ r(st, at) ≤ rmax,
discount factorγ the way0 ≤ γ < 1, the minimum value whichQ(st, at) may admit is
equal tormin/(1− γ).

Proof: Admitting, at worst, all received reinforcementsrt+i = rmin in all steps, exclu-
ding the last one, which receives the maximum reinforcementto achieve its goal, we can
conclude that:

min Q(st, at) = rmin + γrmin + γ2rmin + . . . + γn−1rmin + γnrmax

=
n−1
∑

i=0

γirmin + γnrmax

(19)

On the limit whenn→∞

min Q(st, at) = lim
n→∞

[

n−1
∑

i=0

γirmin + γnrmax

]

= rmin

[

lim
n→∞

n−1
∑

i=0

γi

]

=
rmin

1− γ
�

(20)

a 2

a 2 a 2

ss
aa

4 n

s s 2s 13

a 1

2 2

Figura 3: The s1 state has both maximum values and minimum for the function
value-action Q.

Theorem 4 When using the algorithm HAQL for the solution of a deterministic MDP
with a group of finite states and actions, limited rewards(∀st, at) rmin ≤ r(st, at) ≤ rmax,
discount factorγ the way0 ≤ γ < 1, the maximum error caused by the use of a heuristic
is limited upper by

LH(st) ≤ ξ

[

rmax − rmin

1− γ
+ η

]

. (21)

Proof: From the equation (14), it’s possible to derive:

hmin = 0 whenat 6= πH(st), e

hmax = max
a

Q̂(st, a)− Q̂(st, at) + η whenat = πH(st).
(22)

The valuehmax occurs when bothmax Q(st, at) andmin Q(st, at), ∀st ∈ S, at ∈ A are
found under the samest state. In this case

hmax =
rmax

1− γ
−

rmin

1− γ
+ η. (23)

Substitutinghmax andhmin on the result of theorem 3, we have:

LH(st) ≤ ξ [hβ
max − hβ

min]

≤ ξ

[

rmax

1− γ
−

rmin

1− γ
+ η − 0

]

≤ ξ

[

rmax − rmin

1− γ
+ η

]

.�

(24)

Figure 3 presents an example of configuration where bothmax Q(st, at) and
min Q(st, at) are found under the sames1 state. In it,s2 state is the final state; mo-
ving to s2 generates armax reward and any other movement generates armin reward. In
thiss1 state there is a chance of occurringdeadlocks, because the system can’t reduce the
value ofQ to eliminate the influence of a bad heuristic. The system willonly converge
after aδ time without the influence of the heuristic enough for the error LH(st) to be
corrected by the learning process.

The complete HAQL algorithm is presented on table 2. We may notice that the
only changes which refer to the use of the heuristic functionfor the choice of the action
to be executed and the existence of a step of updating the function Ht(st, at).

Although the functionHt(st, at) can be derived using any method “Heuristic from
X”, a good method increases the speedup and generality of this algorithm. On next section
the method “Heuristic from X” used in this paper is presented.

Tabela 2: The HAQL algorithm.

Initialize Q(s, a).
Repeat:
Visit thes state.
Select an actiona using the rule of state transition.
Receive the reinforcementr(s, a) and notice the next states′.
Update the values ofHt(s, a) using a method “H from X”.
Update the values ofQ(s, a) according to the rule of updating
Q(s, a)← Q(s, a) + α[r(s, a) + γ maxa′ Q(s′, a′)−Q(s, a)].
Update thes← s′ state.
Until some stop criteria is reached.

where:s = st, s′ = st+1, a = at ea′ = at+1.

6. The method “Heuristic from Policy”

Along with HAQL a method “Heuristic from X” named “Heuristicfrom policy” (H-de-
π) was used. This method is composed of two phases: the first oneextracts information
about the structure of the environment from policy, and the second one makes the heuristic
for the policy.

The first phase interactively builds the model of the environment: from the policy
πt(st) in a timet, we use the algorithm of Dynamic Programming called Policy Iteration
[Ribeiro, 2002] to calculate the function valueV π

t (st) in the timet. This is done be-
cause the policy converges faster than the value function, and because of this it generates
information of better quality than the direct use ofVtst.

FromV π
t , the gradient of the value function∇V π

t is calculated. In case of a two
dimensional environment (as in the robotic navigation domain), this step corresponds to
extract the edges which mark the places where there’s a big variation on the value of
V π

t (st), indicating that some feature blocks the execution of one ormore actions. In case
of robotic navigation, the edges can indicate the walls where the robot won’t pass. Fi-
nally, the edges matrix is binarized, using a limiarizationalgorithm. The resulting matrix
corresponds to the map of the environment.

From the model of the environment, the second phase calledHeuristic Backpro-
pagationmakes the heuristic.

It propagates from a final state, the correct policies which lead to that state. For
instance, when coming to the terminal state, we define the heuristic as composed by the
actions which lead from immediately previous states, to this terminal state. In a following
iteration, this heuristic is propagated to the predecessors of the states which already have
a defined heuristic.

Theorem 5 For a deterministic MDP which model is known, the Heuristic Backpropaga-
tion algorithm generates a optimal policy.

Proof: As this algorithm is a simple application of the Dynamic Programming algorithm
[Bertsekas, 1987], the theorem of Bellman itself proves this statement.�

The Heuristic Backpropagation is an algorithm very similarto the Dynamic Pro-
gramming algorithm [Bertsekas, 1987]. In case where the environment is completely
known, both of them work the same way. In case where only part of the environment is
known, the backpropagation is done only for the known states. On the example of robotic

G

R

Figura 4: room with walls (represented by dark lines) discre tized in a grid of sta-
tes (represented by softer lines).

mapping, the model of the environment is gradually done. n this case, the backpropaga-
tion can be done only on the parts of the environment which arealready mapped.

The results of complete implementation of this algorithm will be presented in the
next section.

7. Experiments in the domain of mobile robots

Due to the fact that the reinforcement learning requires a large amount of training episo-
des, the HAQL algorithm has been evaluated, so far, only in a simulated domain.

In these experiments, a domain where a mobile robot can move in four directions
(North, South, East and West) was used in an environment withwalls (figure 4). The
domain is discretized in a grid with N x M positions to a robot,which can perform four
actions: N, S, E , W. The walls are represented by states for which the robot can’t move.
This domain is well-known, having been used in the experiments of [Drummond, 2002]
e [Foster and Dayan, 2002].

It is not difficult to find the optimal policy to this environment. Figure 5 presents
the result of the algorithm of Policy Iteration [Kaelbling et al., 1996, Bertsekas, 1987],
which solved the problem in 38 iterations.

Two experiments were done using the HAQL with Heuristic fromPolicy in this
domain: navigation with repositioning goal and navigationin a new environment. In the
former, the robot learns to reach the environment of the figure 5 and, after a certain time,
the goal is moved to other position.

Figure 6 shows the map of the environment using the method of structure extrac-
tion described in section 6. Figure 7 shows that the policy made from this map. We can
notice that neither the map nor the policy are perfect, but inspite of this, they produce
good results.

The result (figures 8, 9 and 10) shows that, after the goal repositioning (which
happens in the 5000th iteration), theQ–Learninghas to relearn all the policy, while the
HAQL converges in only one step. This happens because, as theenvironment is already
known, the HAQL just makes the heuristic to the new target position. Also, when theQ–

Figura 5: Optimal policy for a mobile robot in an environment with 25 x 25 states
and some walls. Double arrows mean that, in a similar state, i t makes
no difference which one of the two actions to take.

Figura 6: Environment found for the goal repositioning prob lem to figure 5, using
the method described in section 6.

Figura 7: heuristic implemented for the goal repositioning problem using the
method described on section 6.

Learningis used without the reinitialization of the table Q, the system takes about 490506
steps, but if the reinitialization is done, it takes only 7121.

The second experiment takes the Heuristic from Policy method to, on the 100th
iteration, find the map of the environment and speedup the learning process. The result
(figure 11) shows that, while theQ–Learninglearns the policy, the HAQL converges to
the optimal policy after the speeding up. It’s interesting to notice that in the moment of
speeding up, there’s a decrease on the agent’s performance.This is because the map of the
environment isn’t perfect and some actions pointed by the heuristics as good ones aren’t
really. But as the agent keeps learning, these actions are soon ignored and the final result
is a speedup almost immediate.

All the experiments presented were encoded in C++ Language and executed in a
Pentium 3-500MHz, with 256MB of RAM and Linux operating system. The parameters
used in bothQ–Learningand HAQL were the same: learning rateα = 0, 1, γ = 0, 99
and the exploitation rate of 0.9. The reinforcement used were: 10 when the robot reaches
the goal state and -1 when it hits a wall and the presented results are a mean of 100 ages.
In these similar states the Policy Iteration algorithm took811 seconds to find the solution
presented in figure 5.

8. Conclusion and Future Works

The preliminary results obtained indicate that the approach by the class of algorithms
Heuristic Accelerated Learning - HAL are promising. The useof theQ–Learningalgo-
rithm accelerated by Policies – HAQL +H-de-π – presented good results for the domain
of mobile robots.

The biggest problems found refer to the algorithm proposed for the extraction of
the problem structure. First, the necessary time for the construction of the map of the
environment from the policy is very high (about 45 seconds) and second, there’s the need
to know the transition probabilities to solve the linear equations system using dynamic
programming. Thus, this method wasn’t regarded as suitableand other options are being
studied.

Among the future works which must be done for a better evaluation of this algo-

10

100

1000

10000

100000

1e+06

0 2000 4000 6000 8000 10000

A
ve

ra
ge

 s
te

ps

Episodes

Q−Learning
Q−Learning with reinit

HAQL

Figura 8: Result for the goal repositioning of 5000 nd iteration (log y).

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2000 4000 6000 8000 10000

A
ve

ra
ge

 s
te

ps

Episodes

Q−Learning with reinitialization
HAQL

Figura 9: Result for the goal repositioning of 5000 th iteration.

0

500

1000

1500

2000

4900 5000 5100 5200 5300 5400 5500

A
ve

ra
ge

 s
te

ps

Episodes

Q−Learning wit reinitialization
HAQL

Figura 10: Result for goal repositioning on 5000 th iteration.

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200

A
ve

ra
ge

 s
te

ps

Episodes

Q−Learning
HAQL

Figura 11: Result for the speedup on 100 th iteration.

rithm, we have:

1. study with a deeper knowledge about the behavior of the heuristic function. Espe-
cially, what is its relation with the estimate functionF(st, at) used, what allows to
abstract which values ofH to use for a certain problem.

2. validate the HAQL. To do so, there’s the need to study the reutilization of kno-
wledge learned before. For instance, on the simulation of a mobile robot, to reuse
in other environments the policy which was learned in a certain configuration,
there’s the need to compose a new solution from parts of existing solutions. Fi-
nally, to compare this approach to the paper of [Drummond, 2002], using the same
environments proposed by him.

3. Apply the algorithm HAQL also in the domain of the car on themountain. This
domain, very well-known in the control area, studies the control of a car which
must stop at the top of a mountain, from its position and speed. Its feature is
nonlinearity, inexistence of rooms or straight obstacles,which generates a value
function where the borderlines are curves. It was studied by[Drummond, 2002]
and [Munos and Moore, 2002].

4. Study other methods “Heuristic from X” which use a base of cases or not.

Referências

Bertsekas, D. P. (1987).Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Upper Saddle River, NJ.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (2000). Inspiration for optimization from
social insect behaviour.Nature 406 [6791].

Drummond, C. (2002). Accelerating reinforcement learningby composing solutions of
automatically identified subtasks.Journal of Artificial Intelligence Research, 16:59–
104.

Foster, D. and Dayan, P. (2002). Structure in the space of value functions. Machine
Learning, 49(2/3):325–346.

Gambardella, L. and Dorigo, M. (1995). Ant-Q: A reinforcement learning approach to
the traveling salesman problem.Proceedings of the ML-95 - Twelfth International
Conference on Machine Learning, pages 252–260.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A
survey.Journal of Artificial Intelligence Research, 4:237–285.

Mitchell, T. (1997).Machine Learning. McGraw Hill, New York.

Munos, R. and Moore, A. (2002). Variable resolution discretization in optimal control.
Machine Learning, 49(2/3):291–323.

Nalwa, V. S. (1993).A guided tour of computer vision. Addison-Wesley, Reading, MA.

Ribeiro, C. H. C. (2002). Reinforcement learning agents.Artificial Intelligence Review,
17:223–250.

Russell, S. and Norvig, P. (1995).Artificial Intelligence: A Modern Approach. Prentice
Hall, Upper Saddle River, NJ.

Singh, S. P. (1994).Learning to solve Markovian Decision Processes. PhD thesis, Uni-
versity of Massachusetts, Amherst.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.Machine
Learning, 3(1).

Szepesvári, C. and Littman, M. L. (1996). Generalized markov decision processes:
Dynamic-programming and reinforcement-learning algorithms. Technical report,
Brown University, Department of Computer Science, Brown University, Providence,
Rhode Island 02912. CS-96-11.

Watkins, C. J. C. H. (1989).Learning from Delayed Rewards. PhD thesis, University of
Cambridge.

