
Heuristically Accelerated Reinforcement Learning:
Theoretical and Experimental Results

Reinaldo A. C. Bianchi1, Carlos H. C. Ribeiro2 and Anna H. R. Costa3

Abstract. Since finding control policies using Reinforcement
Learning (RL) can be very time consuming, in recent years several
authors have investigated how to speed up RL algorithms by mak-
ing improved action selections based on heuristics. In this work we
present new theoretical results – convergence and a superior limit for
value estimation errors – for the class that encompasses all heuristics-
based algorithms, called Heuristically Accelerated Reinforcement
Learning. We also expand this new class by proposing three new al-
gorithms, the Heuristically Accelerated Q(λ), SARSA(λ) and TD(λ),
the first algorithms that uses both heuristics and eligibility traces.
Empirical evaluations were conducted in traditional control problems
and results show that using heuristics significantly enhances the per-
formance of the learning process.

1 Introduction

One of the main problems of Reinforcement Learning (RL) [12] al-
gorithms is that they typically suffer from very slow learning rates,
requiring a huge number of iterations to converge to a good solution.
This problem gets worse in tasks with high dimensional or continu-
ous state spaces and when the learner receives sparse rewards.

A way to speed up RL algorithms is by making use of a conve-
niently chosen heuristic function, which is used for selecting appro-
priate actions to perform in order to guide state space exploration
during the learning process. Several methods have successfully con-
sidered a heuristic function in RL, including the use of prior domain
knowledge to infer a heuristics [5]; the use of a previous problem
solution as heuristics in the initialization of a Q-table [7]; the use of
information from the learning process to infer a heuristics in execu-
tion time [3, 4] and the reuse of previously learned policies, using a
Case-Based Reasoning approach [6].

In this work we present new theoretical results – convergence and
a superior limit for value estimation errors – for the class that encom-
passes all heuristics-based algorithms, called Heuristically Acceler-
ated Reinforcement Learning. We also expand this class by propos-
ing three new algorithms, the Heuristically Accelerated Q(λ), the
HA-SARSA(λ) and the HA-TD(λ), the first algorithms that use both
heuristics and eligibility traces. Experiments for this work were con-
ducted in two traditional control domains: the Mountain Car Prob-
lem and the Cart-Pole Problem [12], using function approximators
as both domains use continuous state spaces. Nevertheless, the tech-
nique described herein is domain-independent and can be used to
solve a wide range of problems.

1 Centro Universitário FEI, Brazil, email: rbianchi@fei.edu.br
2 Instituto Tecnológico de Aeronáutica, Brazil, email: carlos@ita.br
3 Escola Politécnica da Universidade de São Paulo, Brazil, email:

anna.reali@poli.usp.br

This paper is organized as follows: Sections 2 and 3 briefly reviews
RL and the heuristic approach to speed up RL. Section 4 presents
new theoretical results for the HARL algorithm and Section 5 pro-
poses three new algorithms. Section 6 describes results obtained by
the use of heuristic functions in conjunction with some classic RL
algorithms in benchmark problems. Finally, Section 7 provides the
conclusions and indicates avenues by which the research proposed in
this paper can be extended.

2 Reinforcement Learning

Let us consider a single agent interacting with its environment via
perception and action. On each interaction step t, the agent senses
the current state st of the environment, and chooses an action at to
perform. The action at alters the state st into a new state st+1, and
a scalar reinforcement signal rt (a reward or penalty) is provided to
the agent to indicate the desirability of the resulting state.

The RL problem can be formulated as a discrete time, finite state,
finite action Markov Decision Process (MDP). The learning environ-
ment can be modeled by a 4-tuple 〈S,A, T ,R〉, where: S: is a finite
set of states;A: is a finite set of possible actions; T : S ×A×S →
[0, 1]: is a state transition function, where T (st, at, st+1) is the prob-
ability that performing action at ∈ A in state st ∈ S at time t will
lead to state st+1 ∈ S at time t+ 1;R : S × A → R: is a finite set
of bounded reinforcements (payoffs), r(st, at) ∈ R.

The goal of the agent in the most common formulation of the RL
problem is to learn an optimal policy of actions, π∗, which maxi-
mizes the expected discounted value function [12, Equation 3.8]:

V π(s) = Eπ{
∞∑

k=0

γkrt+k+1|st = s} (1)

for any starting state s, whenR and T are not known.
Identified by Sutton and Barto [12] as “the central and novel idea

of reinforcement learning”, the temporal-difference (TD) learning is
the simplest method for learning the value function. It estimates the
expected discounted value function using:

V̂t+1(st)← V̂t(st) + α
[
rt + γV̂t(st+1)− V̂t(st)

]
. (2)

Another strategy to learn an optimal policy π∗ is to allow the agent
to learn the action-value function. Qπ(s, a) is defined as [12, Equa-
tion 3.9]:

Qπ(s, a) = Eπ{
∞∑

k=0

γkrt+k+1|st = s, at = a} (3)

which represents the expected return for taking action a when visit-
ing state s and following policy π thereafter.

ECAI 2012
Luc De Raedt et al. (Eds.)
© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-169

169

Two algorithms that can be used to iteratively approximate Q are
the Q-learning [15] and the SARSA [14] algorithms. The Q learning
rule is:

Q̂t+1(st, at)← Q̂t(st, at)+

α
[
r(st, at) + γmaxat+1 Q̂t(st+1, at+1)− Q̂t(st, at)

]
(4)

where γ is a discount factor and α is the learning rate.
The SARSA algorithm is a modification of Q-learning that elimi-

nates the maximization of the actions in equation (4), separating the
choice of the actions to be taken from the update of the Q values.
The Q(λ) [15] and the SARSA(λ) [10] algorithms extend the origi-
nal algorithms by, instead of updating a state-action pair at each iter-
ation, updating all pairs in a eligibility trace, proposed initially in the
TD(λ) algorithm.

Finally, to work with problems with continuous state spaces, algo-
rithms can be implemented using function approximators – instead
of a table – to compute the action-value function. In this work the
algorithms used uses two function approximators to compute the Q
value: a CMAC function approximator [1] and the function approxi-
mator described in Barto et al. [2].

3 Heuristics in Reinforcement Learning

Bianchi et al. [4] defined a Heuristically Accelerated Reinforcement
Learning (HARL) algorithm as a way to solve an MDP problem with
explicit use of a heuristic function H : S × A → R for influencing
the choice of actions by the learning agent. The heuristic function is
strongly associated with the policy, indicating which action must be
taken regardless of the action-value of the other actions that could be
used in the state.

The heuristic function is an action policy modifier which does not
interfere with the standard bootstrap-like update mechanism of RL
algorithms. In the HARL algorithms, instead of using only the value
(or action-value) estimation in the action selection method of an RL
algorithm, a mathematical combination between the estimation func-
tion and a heuristic function is used:[

Ft(st, at) �� ξHt(st, at)
β
]

(5)

where:F : S×A → R is an estimate of a value function that defines
the expected cumulative reward (for example, it is Q̂t(st, at) for the
Q-learning);H : S×A → R is the heuristic function that plays a role
in the action choice, defining the importance of executing action at in
state st; �� is a function that operates on real numbers and produces
a value from an ordered set and ξ and β are design parameters used
to control the influence of the heuristic function (they can be lowered
to decrease the influence of the heuristic with time).

This formulation is more general than other previous proposals,
allowing heuristics to be used with different action selection methods
and RL algorithms. One proposed strategy for action choice is an
ε−Greedy mechanism where Ht(st, at) is considered, thus:

π(st) =

{
π′(st) if q ≤ p,

arandom otherwise
(6)

where:

π′(st) = argmax
at

[
Ft(st, at) �� ξHt(st, at)

β
]
, (7)

p is a parameter that define the exploration/exploitation tradeoff, q
is a random number between 0 and 1 and arandom is an action ran-
domly chosen among those available in state st.

Another possible strategy that can use heuristics is Boltzmann ex-
ploration [12], a strategy that assigns a probability to any possible
action according to its expected utility, i.e., actions with higher Q
have greater probability of being chosen. A HARL using this strat-
egy chooses action a with probability:

Pr(at|st) =
e[Ft(st,at)��ξHt(st,at)

β]/τ∑
a′∈A e[Ft(st,a′)��ξHt(st,a′)β]/τ

(8)

where τ is the temperature, which decreases with time.
In general, the value of Ht(st, at) must be larger than the varia-

tion among the values of F(st, a) for a given st ∈ S, so that it can
influence the action choice. On the other hand, it must be as small as
possible in order to minimize the error. If �� is a sum and ξ = β = 1,
a heuristics that can be used with the ε−Greedy mechanism can be
defined by:

Ht(st, at) =

⎧⎪⎨
⎪⎩
maxa∈A [Ft(st, a)]−
Ft(st, π

H(st)) + η if at = πH(st),

0 otherwise.

(9)

where η is a small value and πH(st) is a heuristics obtained using an
appropriate method, that is desired to be used in st.

For instance, let [1.0 1.1 1.2] be the values of F(st, a) for three
possible actions [a1 a2 a3] for a given state st. If the desired action
is the first one (a1), we can use η = 0.01, resulting in H(st, a1) =
0.21 and zero for the other actions.

An important characteristic of a HARL algorithm is that the
heuristic function can be modified or adapted online, as learning
progresses and new information for enhancement of the heuristics
becomes available. In particular, either prior domain information or
initial learning stage information can be used to define heuristics to
accelerate learning.

4 Theoretical results

As the heuristic function is used only in the choice of the action to
be taken, a new HARL algorithm is different from the original RL
one only in the way exploration is carried out. As the RL algorithm
operation is not modified, many of the conclusions reached in RL are
also valid for HARL. In this section we present new theorems that
confirm this statement and limit the maximum error caused by using
a heuristics.

Theorem 1 Consider a HARL agent learning in a deterministic
MDP, with finite sets of states and actions, bounded rewards (∃c ∈
R; (∀s, a), |r(s, a)| < c), discount factor γ such that 0 ≤ γ < 1
and where the values used on the heuristic function are bounded by
(∀st, at) hmin ≤ H(st, at) ≤ hmax. For this agent, the Ft values
will converge to F∗, with probability one uniformly over all the states
s ∈ S, if each state-action pair is visited infinitely often.

Proof: In HARL, the update of the value function approximation
does not depend explicitly on the value of the heuristics. The nec-
essary conditions for the convergence of an RL algorithm that could
be affected with the use of the heuristics, are the ones that depend
on the choice of the action. Of the conditions presented in [8], the
only one that depends on the action choice is the necessity of infinite
visitation to each pair state-action. As equation 6 considers an explo-
ration strategy ε– greedy regardless of the fact that the value func-
tion is influenced by the heuristics, the infinite visitation condition

R.A.C. Bianchi et al. / Heuristically Accelerated Reinforcement Learning: Theoretical and Experimental Results170

is guaranteed and the algorithm converges. The condition of infinite
visitation of each state-action pair can be considered valid for other
exploration strategies (e.g., Boltzmann exploration in Equation 8) by
using other visitation strategies, such as intercalating steps where the
algorithm makes alternate use of the heuristics and exploration steps,
receding the influence of the heuristics with time or using the heuris-
tics during a period of time, smaller than the total learning time for
Q–learning. q.e.d.

The following theorem guarantees that small errors in the approx-
imation of an optimal value function cannot produce arbitrarily bad
performance when actions are selected using the ε-greedy rule influ-
enced by heuristics (Equation 6). The proofs here are based on the
work of Singh [11, Section 4.5.1].

Definition 1 The loss in the approximation of the value function
caused by the use of heuristics can be defined as:

LH(st) = Ft(st, π
∗)− Ft(st, π

H), ∀st ∈ S, (10)

where Ft(st, π
H) is the estimated value function calculated for the

policy indicated by the heuristics, πH .

The theorem presented below defines the upper bound for the loss
LH(st), ∀st ∈ S.

Theorem 2 The maximal loss that can be caused by the use of a
heuristic function bounded by hmin ≤ H(st, at) ≤ hmax in a
HARL algorithm learning in a deterministic MDP, with finite sets of
states and actions, bounded rewards (∀st, at) rmin ≤ r(st, at) ≤
rmax, discount factor γ such that 0 ≤ γ < 1 and where �� is the
addition, has an upper bound:

LH(st) ≤ ξ [hβ
max − hβ

min]. (11)

Proof: There exists a state z that causes maximum loss: ∃z ∈
S, ∀s ∈ S,LH(z) ≥ LH(s). For this state z, consider an optimal ac-
tion a = π∗(z) and the action indicated by the heuristics b = πH(z).
Using a results in the state x, and using b results in the state y. Be-
cause the choice of action is made following an ε-greedy policy, b
must seem at least as good as a:

Ft(z, a) + ξHt(z, a)
β ≤ Ft(z, b) + ξHt(z, b)

β .

Rearranging this equation we have:

Ft(z, a)− Ft(z, b) ≤ ξHt(z, b)
β − ξHt(z, a)

β . (12)

Using the definition of the loss in the approximation of the value
function (Equation 10) and the definition of a and b:

LH(z) = Ft(z, a)− Ft(z, b). (13)

Substituting (12) in (13) gives:

LH(z) ≤ ξ
[
Ht(z, b)

β −Ht(z, a)
β
]
. (14)

Because the action b is chosen instead of the action a, Ht(z, b)
β ≥

Ht(z, a)
β . As the value of H is bounded by hmin ≤ H(st, at) ≤

hmax, it can be concluded that:

LH(st) ≤ ξ [hβ
max − hβ

min], ∀st ∈ S. q.e.d. (15)

Is it possible to improve the definition of the maximal loss. The
following two lemmas are results known to be valid for RL algo-
rithms, which are also valid for the HARL algorithms.

Lemma 1 For any RL or HARL algorithm, learning in a determin-
istic MDP, with finite sets of states and actions, bounded rewards
(∀st, at) rmin ≤ r(st, at) ≤ rmax, discount factor γ such that
0 ≤ γ < 1 , the maximum value that F(st, at) can reach has an
upper bound of rmax/(1− γ).

Proof: From the expected discounted value function definition
(Equation 1) we have:

V π(st) = rt + γrt+1 + γ2rt+2 + . . . (16)

And from the definition ot the action-value function (Equation 3):

Qπ(st, at) = rt + γV π(st+1)

= rt + γrt+1 + γ2rt+2 + . . .

=
∞∑
i=0

γirt+i.

Therefore,

Ft(st, at) = Qπ(st, at) = V π(st) = rt + γrt+1 + γ2rt+2 + . . .

and

Ft(st, at) =
∞∑
i=0

γirt+i, (17)

were rt+i is the sequence of rewards obtained when starting from st,
using π to select the actions and where γ is the discount factor such
that 0 ≤ γ < 1.

Assuming that, in the best case, all received rewards in all steps
were rt+i = rmax, we have that:

maxF(st, at) = rmax + γrmax + γ2rmax + . . .+ γnrmax

=
n∑

i=0

γirmax

Finally, in the limit n→∞, we have:

maxF(st, at) = lim
n→∞

n∑
i=0

γirmax

=
rmax

1− γ
�

If the positive reward is given only when the terminal state is
reached, rt ≤ rmax there are no other rewards for t ≥ t + 1, we
conclude that ∀(st, at),maxF(st, at) ≤ rmax.

Lemma 2 For any RL or HARL algorithm learning in a determin-
istic MDP, with finite sets of states and actions, bounded rewards
(∀st, at) rmin ≤ r(st, at) ≤ rmax, discount factor γ such that
0 ≤ γ < 1 , the minimum value that F(st, at) can reach has a lower
bound of rmin/(1− γ).

Proof: Assuming that, in the worst case, all received rewards in all
steps were rt+i = rmin, we have that:

minF(st, at) = rmin + γrmin + γ2rmin + . . .+ γnrmin

=
n∑

i=0

γirmin

In the limit when n→∞:

minF(st, at) = lim
n→∞

n∑
i=0

γirmin

=
rmin

1− γ
�

R.A.C. Bianchi et al. / Heuristically Accelerated Reinforcement Learning: Theoretical and Experimental Results 171

a
2

a
2

a
2

s

a

4

s s
2

s
13

a
1

2
s

n

Figure 1. Problem where the state s1 have actions that will receive both
the maximum and minimum values for the action-value function F(st, at).

Theorem 3 The maximal loss that can be caused by the use
of a heuristic function in a HARL algorithm learning in a de-
terministic MDP, with finite sets of states and actions, bounded
rewards(∀st, at) rmin ≤ r(st, at) ≤ rmax, discount factor γ such
that 0 ≤ γ < 1 and where �� is the addition, has an upper bound:

LH(st) = ξ

[
rmax − rmin

1− γ
+ η

]β

. (18)

Proof: From Equation 9, we have:

hmin = 0 if at �= πH(st), and

hmax = max
a∈A

[Ft(st, a)]− Ft(st, π
H(st)) + η if at = πH(st).

(19)
The value of the heuristics will be maximum when both the

maxF(st, at) as the minF(st, at), ∀st ∈ S, at ∈ A are found
in the same state st. In this case

hmax =
rmax

1− γ
− rmin

1− γ
+ η. (20)

By substitution of hmax e hmin in the result of Theorem 2, we have:

LH(st) = ξ [hβ
max − hβ

min]

= ξ

[(
rmax

1− γ
− rmin

1− γ
+ η

)β

− 0β
]

= ξ

[
rmax − rmin

1− γ
+ η

]β

. q.e.d.

Figure 1 shows an example of problem configuration where both
the maxF(st, at) and the minF(st, at) are found in the same state,
s1. In it, state s2 is a terminal state; move to s2 generates a reward
rmax and any other movement generates a reward rmin.

5 HARL Algorithms

A generic procedure for a HARL algorithm was defined by Bianchi
et al. [4] as a process that is sequentially repeated until a stopping
criteria is met (Algorithm 1). Based on this description it is possible
to create many new algorithms from existing RL ones.

The first HARL algorithm proposed was the Heuristically Acceler-
ated Q–Learning (HAQL) [3], as an extension of the Q–Learning al-
gorithm [15]. The only difference between the two algorithms is that

Algorithm 1 The HARL generic algorithm [Bianchi et al. 2008]
Produce an arbitrary estimation for the value function.
Define an initial heuristic function H0(·, ·).
Observe the current state st.
repeat

Select an action at by adequately combining the heuristic func-
tion and the value function.
Execute at.
Receive the reinforcement r(st, at) and observe st+1.
Update value (or the action-value) function.
Update Ht(st, at) using an appropriate method.
Update state st ← st+1

until until a stopping criteria is met

HAQL makes use of a heuristic function H(s, a) in the ε − greedy
action choice rule, that can be written as:

π(s) =

{
argmaxa

[
Q̂(s, a) + ξH(s, a)β

]
if q ≤ p,

arandom otherwise,
(21)

In this work we propose three new algorithms: the HA-Q(λ),
which extends the Q(λ) algorithm by using the same action choice
rule as the HAQL (Eq. 21), the HA-SARSA(λ), which extends the
SARSA(λ) algorithm [10] in the same way, and the HA-TD(λ), that
extends the traditional TD(λ) algorithm [13], using an action choice
rule in which a probability function is influenced by the heuristic
(shown in section 6.2). Except for the new action choice rule, the
new algorithms works exactly as the original ones.

6 Experiments using Heuristics

This section presents two experiments conducted to verify that the
approach based on heuristics can be applied to different RL algo-
rithms, that it is domain independent and that it can be used in prob-
lems with continuous state space. The heuristics used were defined
based on a priori knowledge of the domain. It is important to no-
tice that the heuristics used here are not a complete solution (i.e., the
optimal policy) to solve the problems.

6.1 The Mountain Car problem using HAQL and
HA-SARSA(λ)

The Mountain Car Problem [9] is a domain that has been tradi-
tionally used by researchers to test new reinforcement learning al-
gorithms. In this problem, a car that is located at the bottom of a
valley must be pushed back and forward until it reaches the top of a
hill. The agent must generalize across continuous state variables in
order to learn how to drive the car up to the goal state.

Two continuous variables describe the car state: the horizontal po-
sition x restricted to the ranges [-1.2, 0.6] and velocity v = ẋ re-
stricted to the ranges [-0.07, 0.07]. The car may select one of three
actions on every step: Left (F = −1), Neutral (F = 0) , Right
(F = 1) , which change the velocity by -0.0007, 0, and 0.0007, re-
spectively.

To solve this problem, six algorithms were used: the Q–Learning,
the SARSA(λ), the Q(λ), the HAQL, the HA-SARSA(λ) and the
HA-Q(λ), the first three, classic RL algorithms, and the last three,
heuristic versions of them. Because the input variables are continu-
ous, a CMAC function approximator [1] with 10 layers and 8 input
positions for each variable was used to represent the value-action
function (in the six algorithms).

R.A.C. Bianchi et al. / Heuristically Accelerated Reinforcement Learning: Theoretical and Experimental Results172

The heuristics used was defined following a simple rule: always
increase the module of the velocity |ẋ|. The value of the heuristics
used in the HARLs is defined using Eq. (9) as: H(xt, vt, Ft) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
max
a∈A

Q̂(xt, vt, a)−

Q̂(xt, vt, Ft) + η
if

⎧⎪⎨
⎪⎩
vt > 0 and Ft = +1.

or

vt < 0 and Ft = −1.
0 otherwise.

(22)

The parameters used in the simulation are the same for all algo-
rithms: α = 0, 5, γ = 0, 99, λ = 0, 9, exploration rate = 10%,
η = 10. The reward is −10 when applying a force (F = −1 or
F = 1), −1 when F = 0, and 1000 when reaching the goal state.

Table 1 shows, for the six algorithms, the number of steps of the
best solution and the time to find it (average of 30 training sessions
limited to 500 episodes). It may be noted that the Q–Learning algo-
rithm has the worst performance, as expected. It can also be seen that
the algorithms that use heuristics are faster than the others.

Algorithm Best Solution Time
(steps) (in sec.)

Q-Learning 430 ± 45 31 ± 3
SARSA(λ) 171 ± 14 41 ± 18
Q(λ) 123 ± 11 24 ± 14
HAQL 115 ± 1 7 ± 5
HA-SARSA(λ) 119 ± 1 4 ± 1
HA-Q(λ) 107 ± 1 4 ± 1

Table 1. Results for the Mountain Car problem: average number of steps
of the best solution and the average time to find it.

Figure 2 shows the evolution of the number of steps needed to
reach the goal for the six algorithms (average of 30 training sessions).
As expected, the Q–learning has the worst performance (the begin-
ning of its evolution is not presented because values are above 2, 000
steps) and the HARL algorithms present the best results. As the
learning proceeds, the performance of all algorithms become similar,
as expected (Q-learning will reach the optimal solution after 20, 000
steps). This figure also allows one to infer the reason why the time
required for the RL algorithms to find the solution with fewer steps
(presented in table 1) is greater than the time needed by the HARL
algorithms: the smaller number of steps executed by the HARLs at
the beginning of training.

The paths made by the car in the state space (position × speed) at
the first training session, when controlled by the SARSA(λ) and HA-
SARSA(λ) algorithms can be seen in Figure 3 (the optimal control
policy is also presented). It can be seen how SARSA(λ) explores the
environment at the beginning of training and, when compared with
HA-SARSA(λ), one can notice that the great advantage of the HARL
algorithms is to not perform such an intense exploration of the state
space.

Finally, Student’s t–test was used to verify the hypothesis that the
use of heuristics speeds up the learning process. Results confirm the
hypothesis, with a confidence level greater than 99%.

6.2 The cart-pole problem using HATD(λ)

The cart-pole task is used since the early work on RL, such as [2].
The goal of the cart-pole task is to maintain the vertical position of
the pole while keeping the car within a fixed boundary [12]. A failure
occurs when the pole is tilted more than 12 degrees from vertical or if

 100

 1000

 50 100 150 200 250

S
te

p
s
 p

e
r
 t

r
ia

l

Episodes

Q-Learning

SARSA(λ)

Q(λ)

HAQL

HA-SARSA(λ)

HA-Q(λ)

Figure 2. Evolution of the number of steps needed to reach the goal for the
six algorithms (average of 30 training sessions, y axis in log scale).

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

V
e

lo
c
it
y

Position

SARSA(λ)

HA-SARSA(λ)

Optimal Policy

Figure 3. Paths made by the car in the state space.

the cart hits the end of the track. The state variables for this problem
are continuous: the position of the cart yt ∈ [−2.4, 2.4], the speed of
the cart ẏt, the angle between the pole and the vertical θt ∈ [−12, 12]
degrees and the rate of change of the poles angle θ̇t (the dynamic
equations can be found in [2]).

We use two algorithms to solve this problem: TD(λ) and
HATD(λ), which implements a heuristic version of the TD(λ) algo-
rithm. The heuristics used was similar to that of the previous section:
if the pole is falling to the left, move the cart to the left, if it is falling
to the right, move to the right:

H(yt, θt) =

{
+η if θt > 0, ∀yt
−η if θt < 0, ∀yt

(23)

This heuristics influences the choice of actions, which is given by the

R.A.C. Bianchi et al. / Heuristically Accelerated Reinforcement Learning: Theoretical and Experimental Results 173

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 10 20 30 40 50 60 70

T
im

e
 s

te
p

s
 u

n
ti
l
fa

il
u

r
e

Episodes

TD(λ)

HA-TD(λ)

Figure 4. Evolution of the number of steps until failure for the cart-pole
problem. This is the average of 100 trials, therefore it is not possible to see
individual results that reach the success criterion of 500.000 steps without

failure.

probability function:

Pr(a) =
1

1 + eV (yt,θt)+H(yt,θt)
, (24)

where if the rounding of Pr(a) equals zero, the force applied is pos-
itive, if the rounding is equal to one, the force is negative. It can
be seen that the heuristics, in this case, is combined with the Value
Function V (yt, θt) inside the rule that is used by the TD(λ) algo-
rithm (which is not the ε-greedy rule).

To run our experiments, we used the simulator distributed by Sut-
ton and Barto [12], which implements the function approximator de-
scribed in Barto et al. [2]. Trials consisted of 100 episodes. The goal
is to keep the pole without falling for 500.000 steps, in which case
the trial terminates successfully. The parameters used were the same
as in Barto et al. [2]. The value of η used by the HATD(λ) is 10.
The reward is−1 upon failure. The pole is reset to vertical after each
failure.

Table 2 shows the results obtained (average of 100 trials). One
can see that both, the number of the episode in which the pole was
successfully controlled and the number of steps needed to learn to
balance the pole is smaller in HATD(λ). Figure 4 shows the number
of steps until failure for both algorithms. It can be seen that at the
beginning, the HATD(λ) presents a better performance, and that both
algorithms became similar as they converge to the optimal policy.

Finally, Student’s t–test was used to verify the hypothesis that the
use of heuristics speeds up the learning process. The results con-
firm that HATD(λ) is significantly better than TD(λ) until the 50th

episode, with a confidence level greater than 95%.

Algorithm First Successful Steps
Episode until 1st success

TD(λ) 67 ± 16 1,115,602 ± 942,752
HATD(λ) 23 ± 14 637,708 ± 237,398

Table 2. Results for the cart-pole problem.

7 Conclusion

In this work we presented new theoretical results for the class that en-
compasses all heuristics-based algorithms, called Heuristically Ac-
celerated Reinforcement Learning. We also have contributed three
new learning algorithm, HA-Q(λ), HA-SARSA(λ) and HATD(λ),
the first algorithms that uses both heuristics and eligibility traces.
Empirical evaluation of these algorithms in the mountain-car and
cart-pole problems were carried out.

Experimental results showed that the performance of the learning
algorithm can be improved even using very simple heuristic func-
tions. An important topic to be investigated in future works is the use
of generalization in the value function space to generate the heuristic
function.

ACKNOWLEDGEMENTS

Reinaldo Bianchi acknowledges the support of the FAPESP (grant
number 2012/04089-3). Carlos Ribeiro is grateful to FAPESP
(2012/10528-0 and 2011/17610-0) and CNPq (305772/2010-4) and
Anna Costa is grateful to FAPESP (2011/19280-8) and CNPq
(311058/2011-6).

References

[1] J. S. Albus, ‘A new approach to manipulator control: The cerebellar
model articulation controller (CMAC)’, Trans. of the ASME, J. Dy-
namic Systems, Measurement, and Control, 97(3), 220–227, (1975).

[2] A. G. Barto, R. S. Sutton, and C. W. Anderson, ‘Neuronlike elements
that can solve difficult learning control problems’, IEEE Transactions
on Systems, Man, and Cybernetics, (13), 834–846, (1983).

[3] Reinaldo A. C. Bianchi, Carlos H. C. Ribeiro, and Anna H. R. Costa,
‘Heuristically Accelerated Q-learning: a new approach to speed up rein-
forcement learning’, Lecture Notes in Artificial Intelligence, 3171, 245–
254, (2004).

[4] Reinaldo A. C. Bianchi, Carlos H. C. Ribeiro, and Anna H. R. Costa,
‘Accelerating autonomous learning by using heuristic selection of ac-
tions’, Journal of Heuristics, 14(2), 135–168, (2008).

[5] Reinaldo A. C. Bianchi, Carlos H. C. Ribeiro, and Anna Helena Re-
ali Costa, ‘Heuristic selection of actions in multiagent reinforcement
learning’, in IJCAI, ed., Manuela M. Veloso, pp. 690–695, (2007).

[6] Reinaldo A. C. Bianchi, Raquel Ros, and Ramon López de Mántaras,
‘Improving reinforcement learning by using case based heuristics’, in
Lecture Notes in Computer Science, 5650, pp. 75–89. Springer, (2009).

[7] A. Burkov and B. Chaib-draa, ‘Adaptive play Q-learning with initial
heuristic approximation’, in ICRA, pp. 1749–1754. IEEE, (2007).

[8] M. L. Littman and C. Szepesvári, ‘A generalized reinforcement learn-
ing model: convergence and applications’, in ICML’96, pp. 310–318,
(1996).

[9] Andrew Moore, ‘Variable resolution dynamic programming: Efficiently
learning action maps in multivariate real-valued state-spaces’, in Pro-
ceedings of the Eighth International Conference on Machine Learning,
(June 1991). Morgan Kaufmann.

[10] G. Rummery and M. Niranjan. On-line Q-learning using connection-
ist systems, 1994. Technical Report CUED/F-INFENG/TR 166. Cam-
bridge University, Engineering Department.

[11] S. P. Singh, Learning to solve Markovian Decision Processes, Ph.D.
Dissertation, University of Massachusetts, Amherst, 1994.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
MIT Press, Cambridge, MA, 1998.

[13] R. S. Sutton, ‘Learning to predict by the methods of temporal differ-
ences’, Machine Learning, 3(1), 9–44, (1988).

[14] R. S. Sutton, ‘Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding’, in Advances in Neural Information
Processing Systems, 8, pp. 1038–1044. The MIT Press, (1996).

[15] C. J. C. H. Watkins, Learning from Delayed Rewards, Ph.D. disserta-
tion, University of Cambridge, 1989.

R.A.C. Bianchi et al. / Heuristically Accelerated Reinforcement Learning: Theoretical and Experimental Results174

