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Abstract. This work compares the performance of the Ant-ViBRA sys-

tem to approaches based on Distributed Q-learning and Q-learning, when

they are applied to learn coordination among agent actions in a Multi

Agent System. Ant-ViBRA is a modi�ed version of a Swarm Intelligence

Algorithm called the Ant Colony System algorithm (ACS), which com-

bines a Reinforcement Learning (RL) approach with Heuristic Search.

Ant-ViBRA uses a priori domain knowledge to decompose the domain

task into subtasks and to de�ne the relationship between actions and

states based on interactions among subtasks. In this way, Ant-ViBRA is

able to cope with planning when several agents are involved in a com-

binatorial optimization problem where interleaved execution is needed.

The domain in which the comparison is made is that of a manipu-

lator performing visually-guided pick-and-place tasks in an assembly

cell. The experiments carried out are encouraging, showing that Ant-

ViBRA presents better results than the Distributed Q-learning and the

Q-learning algorithms.

1 Introduction

Based on the social insect metaphor for solving problems, the use of Swarm

Intelligence for solving several kinds of problems has attracted an increasing

attention of the AI community [2, 3]. It is an approach that studies the emergence

of collective intelligence in groups of simple agents, and emphasizes the 
exibility,

robustness, distributedness, autonomy and direct or indirect interactions among

agents.

The most common Swarm Methods are based on the observation of ant

colonies behavior. In these methods, a set of simple agents, called ants, cooperate

to �nd good solutions to combinatorial optimization problems. As a promising

way of designing intelligent systems, researchers are applying this technique to

solve problems such as: communication networks, combinatorial optimization,

robotics, on-line learning to achieve robot coordination, adaptive task allocation

and data clustering.

One possible manner of coordinating agent actions in a Multi Agent System

is using the Ant-ViBRA system [1]. It is a Swarm Algorithm that combines the



Reinforcement Learning (RL) approach with Heuristic Search to solve combi-

natorial optimization problems where interleaved actions need to be performed.

The Ant-ViBRA is a modi�cation of a well known Swarm Algorithm { the Ant

Colony System (ACS) Algorithm [6] { which was adapted to cope with planning

when several agents are involved.

In order to better evaluate the results of the Ant-ViBRA system, this work

compares the system performance with the ones obtained using a Distributed

Q-learning (DQL) algorithm proposed by [7] and the Q-learning algorithm [8].

The domain in which this comparison is made is that of a manipulator per-

forming visually guided pick-and-place tasks in an assembly cell. The system

optimization goal is to minimize the execution time by reducing the number of

movements made by the robotic manipulator, adapting in a timely fashion to

new domain con�gurations.

The remainder of this paper is organized as follows. Section 2 describes the

pick-and-place task domain used in this work. Section 3, 4, and 5 present the

Q-Learning, the Distributed Q-Learning, and the Ant-ViBRA algorithm, respec-

tively. Section 6 presents the experimental setup, the experiments performed in

the simulated domain, and the results obtained. Finally, Section 7 summarizes

some important points learned from this research and outlines future work.

2 The Application Domain

The pick-and-place domain can be characterized as a complex planning task,

where agents have to generate and execute plans, to coordinate its activities to

achieve a common goal, and to perform online resource allocation. The diÆculty

in the execution of the pick-and-place task rests on possessing adequate image

processing and understanding capabilities and appropriately dealing with inter-

ruptions and human interactions with the con�guration of the work table. This

domain has been the subject of previous work [4, 5] in a 
exible assembly cell.

In the pick-and-place task, given a number of parts arriving on the table (from

a conveyor belt, for example), the goal is to select pieces from the table, clean

and pack them. The pieces can have sharp edges as molded metal or plastic

objects usually presents during their manufacturing process. To clean a piece

means to remove these unwanted edges or other objects that obstruct packing.

In this way, there is no need to clean all pieces before packing them, but only

the ones that will be packed and are not clean. In this work, pieces to be packed

(and eventually cleaned) are named tenons and the desired place to pack (and

eventually clean) are called mortises.

While the main task is being executed, unexpected human interactions can

happen. A human can change the table con�guration by adding (or removing)

new parts to it. In order to avoid collisions, both the cleaning and packing

tasks can have their execution interrupted until the work area is free of collision

contingencies.

The pick-and-place domain is a typical case of a task that can be decomposed

into a set of independent tasks: packing (if a tenon on the table is clean, pick it



up with the manipulator and put it on a free mortise); cleaning (if a tenon or

mortise have sharp edges, clean it before packing) and collision avoidance.

One of the problems to be solved when a task is decomposed into several tasks

is how to coordinate the task execution. Since collision avoidance is an extremely

reactive task, its precedence over cleaning and assembly tasks is preserved. This

way, only interactions among packing and cleaning are considered. The packing

subtask is performed by a sequence of two actions { Pick-Up followed by Put-

Down { and the cleaning subtask applies the action Clean. Actions and relations

among them are:

{ Pick-Up: to pick up a tenon. After this operation only the Put-Down oper-

ation can be used.
{ Put-Down: to put down a tenon over a free mortise. In the domain, the

manipulator never puts down a piece in a place that is not a free mortise.

After this operation both Pick-Up and Clean can be used.
{ Clean: to clean a tenon or a mortise, removing unwanted material to the trash

can and maintaining the manipulator stopped over it. After this operation

both Pick-Up and Clean can be used.

The coordination problem of the task execution, given a certain table con-

�guration in the pick-and-place domain, becomes a routing problem that can be

modeled as a combinatorial TSP Problem, since the goal here consists in mini-

mize the total amount of displacement performed by the manipulator during the

task execution. We have used three di�erent reinforcement learning algorithms

to learn the agent coordination policy that minimizes the routing problem for a

given table con�guration: Q-Learning, DQL and Ant-ViBRA. These algorithms

are discussed in the next sections.

3 Q-Learning

Reinforcement Learning (RL) algorithms have been applied successfully to

the on-line learning of optimal control policies in Markov Decision Processes

(MDPs). In RL, learning is carried out on-line, through trial-and-error inter-

actions of the agent with the environment. On each interaction step the agent

senses the current state s of the environment, and chooses an action a to perform.

The action a alters the state s of the environment, and a scalar reinforcement

signal r (a reward or penalty) is provided to the agent to indicate the desirability

of the resulting state.

The task of an RL agent is to learn a policy � : S ! A that maps the

current state s into the desirable action a to be performed in s. One strategy to

learn the optimal policy �� is to allow the agent to learn the evaluation function

Q : S�A! R. Each Q(s; a) value represents the expected cost incurred by the

agent when taking action a at state s and following an optimal policy thereafter.

TheQ-learning algorithm [8] iteratively approximatesQ, provided the system

can be modeled as an MDP, the reinforcement function is bounded, and actions

are chosen so that every state-action pair is visited an in�nite number of times.

The Q learning rule is:



Q(s; a) Q(s; a) + �[r(s; a) + 
max
a0

Q(s0; a0)�Q(s; a)] (1)

where: s is the current state, a is the action performed in s, r(s; a) is the

reinforcement received after performing a in s, s0 is the new state, 
 is a discount

factor (0 � 
 < 1), and � is the learning rate (� > 0).

4 Distributed Q-Learning

A recent Distributed Reinforcement Learning algorithm is the Distributed Q-

learning algorithm (DQL), proposed by Mariano and Morales [7]. It is a general-

ization of the traditional Q-learning algorithm described in the previous section

where, instead of a single agent, several independent agents are used to learn a

single policy.

In DQL, all the agents have a temporary copy of the state-action pair eval-

uation functions of the environment, which is used to decide which action to

perform and that are updated according to the Q-Learning update rule.

These agents explore di�erent options in a common environment and when

all agents have completed a solution, their solutions are evaluated and the best

one receives a reward. The DQL algorithm is presented in table 1.

Table 1. The general DQL algorithm [7].

Initialize Q(s; a) arbitrarily

Repeat (for n episodes)

Repeat (for m agents)

Initialize s, copy Q(s; a) to Qcm(s; a)

Repeat (for each step of the episode)

Take action a, observe r, s0

Update Qcm(s; a) Qcm(s; a) + �[
max
a
0 Qcm(s0; a0)�Qcm(s; a)]

s s0

Until s is terminal

Evaluate the m solutions

Assign reward to the best solution found

Update Q(s; a) Q(s; a) + �[r + 
max
a
0 Q(s0; a0)�Q(s; a)]

5 Ant-ViBRA

Ant-ViBRA is a modi�cation of the ACS algorithm in order to cope with di�erent

sub-tasks, and to plan the route that minimizes the total amount of displacement

performed by the manipulator during its movements to execute the pick-and-

place task.



5.1 The ACS Algorithm

The ACS Algorithm is a Swarm Intelligence algorithm proposed by Dorigo and

Gambardella [6] for combinatorial optimization based on the observation of ant

colonies behavior. It has been applied to various combinatorial optimization

problems like the symmetric and asymmetric traveling salesman problems (TSP

and ATSP respectively), and the quadratic assignment problem. The ACS can

be interpreted as a particular kind of distributed RL technique, in particular a

distributed approach applied to Q-learning [8]. In the remaining of this section

TSP is used to describe the algorithm.

The ACS represents the usefullness of moving to the city s when in city r in

the �(r; s), called pheromone, which is a positive real value associated to the edge

(r; s) in a graph. It is the ACS counterpart of Q-learning Q-values. There is also

a heuristic �(r; s) associated to edge (r; s). It represents an heuristic evaluation

of which moves are better. In the TSP �(r; s) is the inverse of the distance Æ

from r to s, Æ(r; s).

An agent k positioned in the city r moves to city s using the following rule,

called state transition rule [6]:

s =

(
arg max

u2Jk(r)
�(r; u) � �(r; u)� if q � q0

S otherwise

(2)

where:

{ � is a parameter which weighs the relative importance of the learned

pheromone and the heuristic distance values (� > 0).

{ Jk(r) is the list of cities still to be visited by the ant k, where r is the current

city. This list is used to constrain agents to visit cities only once.

{ q is a value chosen randomly with uniform probability in [0,1] and q0 (0 �

q0 � 1) is a parameter that de�nes the exploitation/exploration rate: the

higher q0 the smaller the probability to make a random choice.

{ S is a random variable selected according to a probability distribution given

by:

pk(r; s) =

8>><
>>:

[�(r; u)] � [�(r; u)]
�X

u2Jk(r)

[�(r; u)] � [�(r; u)]
�
if s 2 Jk(r)

0 otherwise

(3)

This transition rule is meant to favor transition using edges with a large

amount of pheromone and which are short.

Ants in ACS update the values of �(r; s) in two situations: the local update

step (applied when ants visit edges) and the global update step (applied when

ants complete the tour).

The ACS local updating rule is:

�(r; s) (1� �) � �(r; s) + � ���(r; s) (4)



where: 0 < � < 1 is a parameter (the learning step), and ��(r; s) = 
 �

maxz2Jk(s) �(s; z).

The ACS global update rule is:

�(r; s) (1� �) � �(r; s) + � ���(r; s) (5)

where: � is the pheromone decay parameter (similar to the discount factor

in Q-Learning), and ��(r; s) is a delayed reinforcement, usually the inverse of

the length of the best tour. The delayed reinforcement is given only to the tour

done by the best agent { only the edges belonging to the best tour will receive

more pheromones (reinforcement).

The pheromone updating formulas intends to place a greater amount of

pheromone on the shortest tours, achieving this by simulating the addition of

new pheromone deposited by ants and evaporation. The ACS algorithm is pre-

sented in table 2.

Table 2. The ACS algorithm (in the TSP Problem).

Initialize the pheromone table, the ants and the list of cities.

Repeat (for n episodes) /* an Ant Colony iteration */

Repeat (for m ants) /* an ant iteration */

Put each ant at a starting city.

Repeat (for each step of the episode)

Chose next city using equation (2).

Update list Jk of yet to be visited cities for ant k.

Apply local update to pheromones using equation (4).

Until (ants have a complete tour).

Apply global pheromone update using equation (5).

5.2 The Ant-ViBRA algorithm

To be able to cope with a combinatorial optimization problem where interleaved

execution is needed, the ACS algorithm was modi�ed by introducing: (i) several

pheromone tables, one for each operation that the system can perform, and;

(ii) an extended Jk(s; a) list, corresponding to the pair state/action that can be

applied in the next transition.

A priori domain knowledge is intensively used in order to decompose the

pick-and-place problem into subtasks, and to de�ne possible interactions among

subtasks. Subtasks are related to pick-and-place actions (Pick-Up, Put-Down

and Clean { see section 2), which can only be applied to di�erent (disjunct) sets

of states of the domain.

The use of knowledge about the conditions under which every action can be

applied reduces the learning time, since it makes explicit which part of the state

space must be analyzed before performing a state transition.



In Ant-ViBRA the pheromone value space is decomposed into three sub-

spaces, each one related to an action, reducing the search space. The pheromone

space is discretized in \actual position" (of the manipulator) and \next posi-

tion" for each action. The assembly workspace con�guration perceived by the

vision system de�nes the position of all objects and also the dimensions of the

pheromone tables.

The pheromone table corresponding to the Pick-Up action has entries \actual

position" corresponding to the position of the trash can and of all the mortises,

and entries \next position" corresponding to the position of all tenons. This

means that to perform a pick-up, the manipulator is initially over a mortise (or

the trash can) and will pick up a tenon in another place of the workspace.

In a similar way, the pheromone table corresponding to the Put-Down action

has entries \actual position" corresponding to the position of the tenons and

entries \next position" corresponding to the position of all the mortises. The

pheromone table corresponding to the Clean action has entries \actual position"

corresponding to the position of the trash can and of all the mortises, and entries

\next position" corresponding to the position of all tenons and all mortises.

The Jk(s; a) list is an extension of the Jk(r) list described in the ACS. The

di�erence is that the ACS Jk(r) list was used to record the cities to be visited,

assuming that the only action possible was to move from city r to one of the

cities in the list.

To be able to deal with several actions, the Jk(s; a) list records pairs

(state=actions), which represent possible actions to be performed at each state.

The Ant-ViBRA algorithm introduces the following modi�cations to the ACS

algorithm:

{ Initialization takes care of several pheromone tables, the ants and the Jk(s; a)

list of possible actions to be performed at every state.

{ Instead of directly choosing the next state by using the state transition rule

(equation 2), the next state is chosen among the possible operations, using

the Jk(s; a) list and equation (2).

{ The local update is applied to pheromone table of the executed operation.

{ When cleaning operations are performed the computation of the distance Æ

takes into account the distance from the actual position of the manipulator

to the tenon or mortise to be cleaned, added by the distance to the trash

can.

{ At each iteration the list JK(s; a) is updated, pairs of (state=actions) already

performed are removed, and new possible pairs (state=actions) are added.

The next section presents experiments of the implemented system, and results

where the performance of Ant-ViBRA, DQL and Q-learning are compared.

6 Experimental Description and Results

Ant-ViBRA was tested in a simulated domain, which is represented by a discrete

10x10 workspace where each cell in this grid presents one of the following six



con�gurations: one tenon, one mortise, only trash, one tenon with trash on it,

one mortise with trash on it, one tenon packed on one mortise, or a free cell.

Experiments were performed considering di�erent con�gurations of the

workspace, learning successfully action policies in each experiment under the

assembly task domain. In order to illustrate the results we present three exam-

ples. In all of them, the goal is to �nd a sequence in which assembly actions

should be performed in order to minimize the distance traveled by the manipu-

lator grip during the execution of the assembly task. One iteration �nishes when

there is no more piece left to be packed, and the learning process stops when

the result becomes stable or a maximum number of iterations is reached. All

three algorithms implemented a priori domain knowledge about the position of

the pieces in order to reduce the state space representation, reducing the search

space.

In the �rst example (�gure 1) there are initially 4 pieces and 4 tenons on

the border of a 10x10 grid. Since there is no trash, the operations that can be

performed are to pick up a tenon or put it down over a mortise. The initial (and

�nal) position of the manipulator is over the tenon located at (1,1).
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Fig. 1. Con�guration of example 1 (left) and its results (right).

In this example, the average of 25 episodes of the Ant-ViBRA algorithm took

844 iterations to converge to the optimal solution, which is 36 (the total distance

between pieces and tenons). The same problem took 4641 steps in average to

achieve the same result using the Distributed Q-learning and 5787 steps using

the Q-learning algorithm. This shows that the combination of both reinforcement

learning and heuristics yields good results.

The second example (�gure 2) is similar to the �rst one, but now there are

8 tenons and 8 mortises spread in a random disposition on the grid. The initial

position of the manipulator is over the tenon located at (10,1). The result (see

�gure 2-right) is also better than that performed by both the DQL and the

Q-learning algorithm.



= Mortises = Tenons

65

70

75

80

85

90

95

0 2000 4000 6000 8000 10000

Iterations

Distance

Q-Learning
DQL

Ant-ViBRA

Fig. 2. Con�guration of example 2 (left) and its results (right).

Finally, example 3 (�gure 3) presents a con�guration where the system must

clean some pieces before performing the packing task. The tenons and mortises

are on the same position as example 1, but there are trashes that must be re-

moved over the tenon in the position (1, 10) and over the mortise (6, 1). The

initial position of the manipulator is over the tenon located at (1,1). The opera-

tions are pick up, put down and clean. The clean action moves the manipulator

over the position to be cleaned, picks the undesired object and puts it on the

trash can, located at position (1, 11). Again, we can see in the result shown in

�gure 4-right that the Ant-ViBRA presents better results.

TrashCan
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Fig. 3. Con�guration of example 3 (left) and its results (right).

In the 3 examples above the parameters used were the same: exploita-

tion/exploration rate is 0.9, the discount factor 
 is set at 0.3, the maximum

number of iterations allowed was set to 10000 and the results are the average of



25 episodes. For both the Q-learning and the DQL, the learning rate � is set at

0.1. In a similar way, the learning step � is set at 0.1 for the Ant-ViBRA. The

experiments were implemented on a AMD K6-II-500MHz, with 256 MB RAM

memory, using Linux and GNU gcc.

7 Conclusion

The experiments carried out show that the Ant-ViBRA algorithm was able to

minimize the task execution time (or the total distance traveled by the manip-

ulator) in several con�gurations of the pick-and-place workspace. Besides that,

the learning time of the Ant-ViBRA was also small when compared to the Dis-

tributed Q Learning and Q-Learning techniques.

Future works include the implementation of an extension of the Ant-ViBRA

algorithm in a system to control teams of mobile robots performing foraging

tasks, and the exploration of new forms of composing the experience of each

agent to update the pheromone table after each iteration.
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