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Abstract

In this paper we present a distributed control
architecture engaged in purposive computer vision tasks.
In this context, the vision system’s purpose is translated
into a set of behaviors, which are decomposed in specific
tasks. A Multi-Agent approach is used to model purpose,
behaviors, tasks and the relationship among them. Purpose
is modeled by a society of autonomous agents, each one
responsible for a specific visually guided behavior. Tasks
are represented by basic agents, organized in a hierarchical
structure with autonomous agents on the top. As a testbed,
the architecture of a specific system for visually guided
assembly is presented, and a distributed implementation is
described.

1. Introduction

Motivated by the present discussion between the
Reconstructive and the Purposive paradigm of Computer
Vision, and seeking a formal theory of behaviors, as
proposed by Aloimonos [1], this paper presents a
Distributed Control Architecture engaged in purposive
computer vision tasks. Along with this Architecture, we
define a Distributed AI based methodology to build a
Purposive Computer Vision system.

In this context, the vision system’s purpose is translated
into a set of behaviors, which are decomposed in specific
tasks. A Multi-Agent approach is used to model purpose,
behaviors, tasks and the relationship among them. Purpose
is modeled by a society of autonomous agents, each one
responsible for a specific visually guided behavior. Tasks
are represented by basic agents, organized in a hierarchical
structure with autonomous agents on the top.

The Architecture proposed has several distinguishing
features. These features allow the cooperation between low
and high processes, giving modularity, flexibility, and

autonomy to the system, allowing the addition and deletion
of agents responsible for behaviors, and facilitating the
integration of system and environment.

This paper presents the purposive paradigm and its
relation to the reconstructive one in section 2. In section 3
will be given an overview of Distributed Artificial
Intelligence and Multi-Agent Systems. Works related to
this are presented in section 4. An overview of the
proposed architecture is given in section 5 and section 6
presents an implementation of the architecture in a real
system. Finally section 7 concludes this paper.

2. Purposive computer vision

The reconstructive paradigm [11] is the dominant one
and the first to appear. According to it, vision’s goal is “to
solve the problem of reconstructing an accurate
representation of the 3-D scene and its proprieties from
image cues such as shading, contours, motion, stereo,
color, etc.” [2]. The main concerns about this paradigm, as
presented by Tarr and Black [11], are that “recovery
algorithms are not robust in the presence of noise and they
are irremediably inefficient”.

Despite the fact that such assertion is questionable, the
discontentment with the reconstructive paradigm became
evident in the late 80’s, giving rise to some new
paradigms, like Active, Animate and Qualitative Vision.
With the  integration of the ideas proposed by these
paradigms, and the addition of other new ones, the
purposive paradigm arose.

The purposive paradigm [1] believes that vision must
be considered within the set of tasks an agent must
accomplish, and tries to find in the purpose of the agent the
constrains to solve the ill posed problem of vision. Another
fundamental characteristic of this paradigm is the large
integration of visual modules with other AI ones, like
planning, reasoning and learning modules, since vision is



2

not considered as a self contained problem, which can be
better treated if integrated with other AI modules.

The purposive paradigm researchers believe that
general purpose vision will arise from the organization of
several different dedicated solutions to different visual
tasks. So, the main problem is how to organize solutions
and define primitive tasks, focusing on architectures for
integration of visual systems.

Aiming at this problem, Aloimonos [1] asks for a
formal theory of behaviors, a kind of “behavioral
calculus”, and he suggests that some discrete formalisms
are good candidates for formalizing behaviors. Seeking an
answer to this question, we look at Distributed AI and
Multi-Agent Systems theory as a field where this
formalism can be found.

3. Distributed Artificial Intelligence and
Multi-Agent Systems

Distributed Artificial Intelligence (DAI) is defined by
Bond and Grasser [6] as: “the field of AI concerned with
concurrency in AI computations, at many levels.” It can be
divided into two fields: Distributed Problem Solving
(DPS), concerned on how to solve a particular problem
with several cooperating modules, and Multi-Agent
Systems (MAS), concerned with the coordination of the
behaviors of several autonomous intelligent agents to solve
one or more goals. DPS and MAS are not disjoint areas, as
DPS can be viewed as a part of the solution of a problem
in the MAS approach.

In the next section works that are related to this one,
most of them based on DAI, will be presented.

4. Related works

Some works that based and inspired this work, and from
where many ideas and criticism originated, are: Brooks [5]
Subsumption Architecture, where a system is composed of
layers with specific tasks, and where each layer interacts
directly with the world through perception and action;
Elfes [8] Distributed Control Architecture, where a system
is divided into processing levels and where independent
processes communicate through a blackboard; and Boissier
and Demazeau [3],[4] ASIC Multi-Agents Control
Architecture and the MAVI system, which integrate
different visual modules using MAS theory.

One difference from our architecture to Brooks’
Subsumption architecture, is that all behaviors of a system
(represented by Autonomous Agents) can communicate
with each other, forming a completely connected network.
Other differences between both architectures are:
• while the decision capabilities of a Subsumption based

system are hidden in the Finite State Machines and are

not explicitly distributed, they are explicit and
distributed in agents in our architecture, so we can
know where a decision is being made;

• in our architecture the interface between agents is
better defined than the interface between layers in the
Subsumption Architecture. In this way, one does not
need to have a precise knowledge of the topology of a
layer to add a new behavior on the system, having
only to add an agent to it. Therefore, adding behaviors
in our architecture is easier than in the Subsumption
architecture.

• finally, there is some symbolic knowledge
(qualitative) in each agent, while there is no explicit
representation in the Subsumption Architecture.

The main difference between our architecture and
ASIC/MAVI [4] is that the latter has a more traditional
approach to computer vision concerning the representation
levels, based on the three levels proposed by Marr, while
our architecture the modularization is purposive and
behavioral, with less intermediate levels.

Another difference between both architectures is that in
ASIC, the agent model is subdivided into layers based on
the processes an agent has (a decision layer, an adaptation
layer and a control layer, and only this last one interacts
with the environment), while in our architecture an agent is
simpler, relying on more basic agents to accomplish its
tasks, and all agents interacts directly with the world.

Rivlin et al [10] and Aloimonos [1] also inspired this
work. The first presents a framework for a purposive
recognition system and the second discusses the purposive
paradigm and asks for a theory of behaviors. Aloimonos
[1] also presents a problem with Brooks architecture,
specifically that in it should enable low and high level
processes to cooperate directly, which it doesn’t.

Trying to solve these problems, we propose the
following architecture.

5. The proposed architecture

The previous sections introduce the context in which
the control architecture proposed is embedded. In this
section we present the architecture in details and the
characteristics which enable it to show improvements over
other known architectures.

In the proposed architecture, a system is modeled with
autonomous agents (AAs), each one responsible for a
specific behavior, organized in a society with rules of
behavior where they have to communicate to achieve their
goals. A single agent model is defined for all autonomous
agents. Each AA communicates with other AAs in the
society and also with Basic Agents, which are responsible
for specific tasks.  This decomposition of the system in
agents with their behaviors is similar to the task
decomposition proposed by Brooks [5].
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In this society, each autonomous agent is connected to
all other agents, through a decentralized communication
network, which topology is that of completely connected
network. This topology is presented schematically in figure
1.

Figure 1 - Architecture Scheme.
The autonomous agents can be classified as the focus-

agents described in Boissier and Demaseau [3], which are
defined as the ones created in a vertical splitting of the
system in its tasks, because each agent has a defined
behavior. They are also related to the layers of the Brooks
Subsumption Architecture, because they perceive and act
directly in the world, as shown in figure 1.

The autonomous agents are organized in a society with
rules of behaviors and with an authority structure. This
structure enables the agents to decide how the resources of
the system are allocated, for example, to decide which
agent should have the control of one resource at a certain
moment. The manner this decision is made is dependent of
the rules defined for the society in a specific
implementation, and can be, for example,  the result of a
competition between the agents.

A resource is defined as a part of the system that is
shared by the agents, and that can be controlled by only
one agent at a time. For example, a robotic manipulator in
an assembly cell is a resource, and the drive system of a
mobile robot is another. On the other hand, a fixed camera
(and its data acquisition hardware and software) is not a
resource, as all agents can have the images it captures at
the same time. But this camera could a resource if acting in
an active vision system, where each agent could compete
to control the process of data acquisition.

This authority structure is deeply related to the
dependence and precedence of the behaviors of the
autonomous agents in the society, and its definition is
based on the study of the linearization of an activity plan,
which has the behavior of the autonomous agents as
operators, the resources an autonomous agent needs as the
pre-conditions of the operator it defines, and the
accomplishment of the system intentions as it goals.

The definition of how the autonomous agents can
allocate resources of the system is left to the
implementation of the system itself.

It is worth noticing that is the authority structure that
makes this architecture related to the Subsumption
architecture, allowing agents to suppress each other
behaviors by taking away resources. Finally, the authority
structure has a logic nature, while the communication
network between the autonomous agents has a physical
nature.

This architecture can be observed from three different
abstraction levels (based on a division proposed by
RIVLIN et al [10]) concerning its behavioral aspects:
• in the first level, named intentional level, is the global

purpose of the system. The system is represented here
by a society of autonomous agents;

• in the intermediary level, named behavioral level, are
the behaviors the system has to reach its intentions. It is
represented by autonomous agents, each one showing a
diverse behavior;

• in the third level, named task level, are the tasks in
which the behaviors are decomposed. The system is
represented here as a society of basic agents, with the
autonomous agents acting as controllers for the basic
agents.
This behavioral levels are given in table 1.

Behavioral
Levels

Description

Intentions Purpose of the system.
Behaviors Behaviors in which the intention of

the system is divided.
Tasks Tasks in which the behaviors are

divided.

Table 1 - Behavioral levels of the system.
Table 2 shows the behavioral levels, the Multi-Agent

model used to implement each level, and their relation to
the Brooks Subsumption Architecture.

Behavioral
Level

Multi-Agent
Model

Brooks
Subsumption
Architecture

Intentions A society of
autonomous agents.

The purpose of
the system.

Behaviors An autonomous
agent to each
behavior.

The layers of
the architecture.

Tasks Basic Agents in a
society, composing
the autonomous
agents skills.

The Finite State
Machines
(FSM) that
composes each
layer.

Table 2 - Comparison between the behavioral
levels, the MA model and the Subsumption

Architecture.

Agent

Agent

Agen

Action
(Manipulator

Perception
(Cameras)
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We propose an empirical division of the system, based
on Brooks [5] Task Decomposition and Rivlin [10] to split
intentions in behaviors, and based on Boissier and
Demazeau [3],[4] to split behaviors in tasks.

One of the main features of the proposed Architecture is
the definition of an Autonomous Agent, which is viewed
below.

5.1. Autonomous Agents (AAs)

In this architecture the autonomous agents (AA) are
modeled based on DAI-MAS theory, and its definition is
strongly influenced by the work of Boissier and Demazeau
[4]. An AA is defined as:

<Agent> ::= <rules> <other agents> <state of the
world> <communication language>
<basic agents> <decision capabilities>

Where:
<rules> are the behavior rules and the authority relation

between the AAs in the society;
<other agents> are the other AAs in the society, and the

topological information of the society;
<state of the world> is the minimal symbolic

representation of the world that an agent need;
<communication language> is the language used by the

AAs to communicate;
<basic agents> are the basic agents each AA has

connection to;
<decision capabilities> are the capabilities an AA has to

be able to decide which agent has the control of a
resource in a certain moment.
This definition is used to model all AAs in the system,

not mattering their behavior. An essential feature related to
agents in a DAI-MAS environment is their capability to
communicate. That makes the definition of this
communication language a very important topic, which is
detailed in the next item.

5.2. AA’s Communication Language

A Communication Language for the AAs is defined,
based on the one described in Boissier and Demazeau [4],
as:

<interaction> ::= <nature><type><content>
The nature of the message can be decision or control.

The decision messages are used to decide which agent will
have the control of one resource of the system in a defined
moment. It has four types:
request     -  used by an AA to request the control of a

resource to another. The message indicates which agent
is asking the control and the resource it wants;

agreed      - used by an AA to agree with a
requisition. This message is used to acknowledge the

request, and does not transfer the control of the
resource;

free           - used to inform that an AA is willing to
release a resource;

inform       -  used to transfer the control of a resource
from one AA to another. The message indicates which
agent is transferring the control, if it is taking or giving
the control, to which agent it is giving the control (if
this is the case), about which resource is the transaction
and the state of the resource (for example, when
releasing a manipulator, if its grip is open or closed,
with or without an object).
When an AA sends a free  message, meaning that it

doesn’t need the control of the resource any longer, several
other AAs can request this control, which is then
transferred to the one which has higher authority.

Messages which nature is control are used to add and
delete AAs in the society. It has three types:
addNewAgent - used to add an agent to the society. Its

contents are the name of the new agent and two lists,
one with the name of the agents with higher authority
and one with the name of the agents with less authority;

deleteAgent - used to delete an agent from the society;
acknowledge- used by the other agents in the society to

acknowledge with the insertion or deletion of an agent.
Table 3 summarizes the communication language

defined for the autonomous agents.

<nature> <type> <content>
addNewAgent <name of the new

agent> <above
which agents>
<below which
agents>

control deleteAgent <name of the
agent>

acknowledge <name of the
agent>

request <name of the
agent> <resource>

decision agreed <name of the
agent> <resource>

free <name of the
agent> <resource>

inform <name of the
agent> <give|take>
<from|to which
agent> <resource>
[state]

Table 3 - The types of messages defined in the
communication language of the autonomous

agents.
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5.3. Basic Agents (BAs)

In the proposed architecture, the AAs communicate
with a set of basic agents (BAs), which are responsible for
specific tasks. These BAs are connected through a
communication network and organized in a hierarchical
structure with AAs on the top.

Part of the knowledge the AAs need to accomplish their
behaviors, as visual and manipulation tasks, are located at
this BAs, and is in them that the processing of this tasks
occurs.

In this manner, each AA interacts with several BAs, and
the set of BAs one AA has contact can be completely
different from one AA to another. Moreover, the BAs in
the set an AA has connection can also interact among
themselves and with other BAs in sets connected to other
AAs. Figure 2 schematically draws an example of 2 AAs
with their sets of BAs.

Figure 2 - Example of two autonomous agents
and their basic agents.

The knowledge about the set of BAs an AA can interact
is defined in a list containing the name of the BAs and the
tasks each one can accomplish or the information they can
provide. This list is located in the field <basic agents> of
each autonomous agent.

In the same way, the BAs have knowledge about other
BAs they can interact, and the respective task/information
this other BAs can accomplish/provide. Therefore, it is
clear that the basic agents also have decision capabilities,
to be able to divide their tasks into sub-tasks other BAs
can accomplish and rebuild the partial information
provided by them to achieve one sub-goal.

The information (data and task requisitions) exchange
among BAs and AAs is done through a message exchange,
where a message is defined as:

<message> ::= <type><to which><content>
Where:

<type>         - is the type of the message, if a request
for task/data or a submission of information;

<to which>  -  is to which agent is the message. It can
be sent to one or many agents, among AAs and ABs;

<content>    - is the content of the message.

Here again, we must point out that this definition is
based on Boissier and Demazeau [3]. Also, the basic
agents proposed here are similar to the basic-agent used by
them to analyse some computer vision systems. In that
work, a basic-agent is defined as the building blocks of the
systems, arising from the intersection between the vertical
splitting (in tasks) and the horizontal splitting (in
representation levels) of a system. Finally, they are also
similar to the Finite State Machines of the Subsumption
architecture.

6. Implementation of the architecture

This section briefly shows that the architecture is being
implemented on a Flexible Assembly Cell [9] at the Escola
Politécnica da Universidade de São Paulo, composed of
several workstations, two robotic manipulators and
cameras, in a system performing simple visually guided
assembly tasks. Whereas the chosen domain is the one of
an assembly cell, the architecture can be applied to other
domains, like to autonomous mobile robots.

The system, which uses one of the manipulators of the
cell (figure 3), is being implemented on several
workstations, where the agents are executed as
independent and parallel distributed processes,
communicating through the cell network.

Figure 3: One of the manipulators at the
Flexible Assembly Cell.

For this application was defined three different
behaviors, each one corresponding to an autonomous
agents, which are:
Assembler agent: to accomplish an assembly, picking up

pieces on the workspace with the manipulator and
putting them in a desired location. The goal of the
assembly and the type of pieces involved in it can
change, for example, from the assembly of a known
object to the selection of pieces by shape or color. To

AAAA

BA BA BA BA BA BA BA BA
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be able to do this, this agent must be apt to plan the
activities involved in the assembly. This planning can
be simple or complex, reactive or temporal, depending
on the complexity desired for the system. In the present
state of this implementation, the agent does not have
automatic planning, and the plan is therefore previously
defined.

Cleaner agent: to clean the workspace, which is a
previously defined area, where the assembly is made.
In this manner, unwanted objects that people or another
manipulator may have put on this area must be taken
away by this agent.

Collision Avoider agent: to avoid collisions of the
manipulator with objects (other manipulators, a hand)
that move in the workspace, aiming the preservation of
the system’s physical integrity.
Recalling that resources are defined as a part of the

system that is shared by the agents and that can be
controlled by only one agent at a time, we determined that
the only resource the agents share in this application is the
manipulator, as all them can use the cameras at the same
time and, in this implementation, the cameras are not
active sensors.

Also, the agents’ society has three rules, which makes
the three agents compete for the control of the manipulator
(the only resource). The rules defined for the system are:

Rule # 1: Only one agent can control the manipulator in
a given moment.

Rule # 2: Any agent can request the control of the
manipulator to an agent with less authority than itself, at
any moment.

Rule # 3: An agent can only request the control of the
manipulator to an agent with more authority than itself if
that agent is releasing the control.

The authority structure defined for the autonomous
agents is: the Collision-Avoider is the one with higher
authority, the Cleaning agent is the second in rank and the
Assembler is the one with less authority. One can see that
this structure has as main goal preserve the physical
integrity of the system, and as a secondary goal, the global
purpose of the system.

The example given below describes, in a LISP like
manner, the messages that are exchanged when an object is
placed on the workspace during an assembly. First, the
Collision-Avoider agent requests the control of the
manipulator to the Assembler, to avoid the possible
collisions; the Assembler agent agrees with the requisition
and transfers the control to the Collision-Avoider; when
the danger of a possible collision ceases, the Collision-
Avoider releases the control of the resource, which is
requested by both the Cleaner and the Assembler agents;
the Avoider agrees with the requisitions, and transfers the
control to the agent with higher authority, the Cleaner,
which assumes the control; when the Cleaner finishes to

clean the workspace, it releases the control, which is
requested by the Assembler; request accepted by the
Cleaner, the Assembler reassumes the control and goes
back to its job.

comment: the control is with the
Assembler.

((decision)(request)(collisionAvoider)(
manipulator))

((decision)(agreed)(assembler)
(manipulator))

((decision) (inform) ((assembler)
(give) (collisionAvoider)
(manipulator)(piece in grip)))

((decision)(inform)((collisionAvoider)(
take)(piece in grip)))

comment: the collision is avoided.
((decision)(free)(collisionAvoider)

(manipulator))
((decision)(request)(assembler)

(manipulator))
((decision)(request)(cleaner)

(manipulator))
((decision)(agreed)(collisionAvoider)

(manipulator))
((decision)(inform)((collisionAvoider)(

give)(cleaner)(manipulator) (piece in
grip)))

((decision)(inform)((cleaner)(take)
(manipulator)(piece in grip)))

comment: the object is taken away.
((decision)(free)(cleaner)

(manipulator))
((decision)(request)(assembler)

(manipulator))
((decision)(agreed)(cleaner)

(manipulator))
((decision)(inform)((cleaner)(give)

(assembler)(manipulator)(piece in
grip)))

((decision)(inform)((assembler) (take)
(manipulator) (piece in grip)))

Example 1 - Message exchange during an
assembly interruption.

7. Discussions and Conclusion

One feature which is worth noting is that in the
presented architecture all behaviors of a system
(represented by Autonomous Agents) can communicate
with each other, resulting in a completely connected
network. Another relevant feature is the modularity this
architecture provides, as one does not need to have a
precise knowledge of the topology of a layer to add a new
behavior on the system, having only to add an agent to it.
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Finally, we conclude that the Multi-Agents is a very
fruitful approach to model an architecture for a purposive
computer vision system, since it makes easier the mapping
of the system purpose in its behaviors, and of the behaviors
in tasks.
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