
Implementing Computer Vision Algorithms in
Hardware: an FPGA/VHDL-based Vision System for a

Mobile Robot.

Reinaldo A. C. Bianchi1,2 and Anna Helena Reali Costa1

1 LTI - Laboratório de Técnicas Inteligentes, Departamento de Engenharia da Computação,
Escola Politécnica da Universidade de São Paulo

Av. Prof. Luciano Gualberto, trav. 3, 158.
05508-900 São Paulo – SP – Brazil.

{rbianchi, anna}@pcs.usp.br

2 Faculdade de Engenharia Industrial, Departamento de Engenharia Elétrica,
Av. Humberto de A. C. Branco, 3972 - 09850-901

São Bernardo do Campo, SP, Brazil
rbianchi@cci.fei.br

Abstract. A time critical process in a real-time mobile robot application such as
RoboCup, is the determination of the robot position in the game field. Aiming
at low-cost and efficiency, this paper proposes the use of field-programmable
gate array device (FPGA) in the vision system of a robotic team. We describe
the translation of well-known computer vision algorithms to VHDL and detail
the design of a working prototype that includes image acquisition and process-
ing. The CV algorithms used in the system includes thresholding, edge detec-
tion and chain-code segmentation. Finally, we present results showing that an
FPGA device provides hardware speed to user applications, delivering real-time
speeds for image segmentation at an affordable cost. An efficiency comparison
is made among the hardware-implemented and a software-implemented (C lan-
guage) system using the same algorithms.

1 Introduction

One of the time critical processes of real-time mobile robot applications, such as the
RoboCup [1] or any other dynamic and interactive domain is the determination of the
robot position. Several approaches have been traditionally used to solve this problem,
including custom hardware accelerators and software systems.

On one hand, custom hardware accelerators for image processing are usually high
priced, closed systems that implements tracking or threshold algorithms, which can
deliver real-time performance but do not allow hardware reconfiguration to adapt to
new situations. On the other hand, software systems using low-cost image acquisition
boards present lower performance than hardware approaches and hinder robot minia-
turization.

Aiming at a low-cost, small-size, hardware-based vision system we propose the use
of a Field Programmable Gate Array (FPGA) device for the image processing in the
F-180 and the F-2000 leagues.

This paper presents the translation of well-known Computer Vision algorithms to
VHDL, a programming language used to define the function of the FPGA circuit and
the design of a working prototype that includes image acquisition and processing. The
CV algorithms used to define the position of the objects in an image thresholding,
Edge Detection and Chain-Code Segmentation.

These algorithms were tested on an ALTERA Laboratory Package and on individ-
ual components. Testing results shows that FPGA device provides hardware speed to
user applications, delivering real-time speeds for image segmentation at an affordable
cost (lower than a custom PC frame grabber).

The reminder of this paper is organized as follows. Section 2 introduces the FPGA
and the VHDL language used to write programs that define the FPGA circuit. Section
3 describes the complete vision system, including the image acquisition process and
the CV algorithms used. Section 4 presents the translation of the algorithms to VHDL.
Section 5 presents the experimental setup and the results obtained. Finally, Section 6
summarizes some important points learned from this research and outlines future
work.

2 FPGA and VHDL

Field Programmable Gate Arrays – FPGA [2] are integrated circuit that can have their
hardware designed by the user. An FPGA contains a large number of identical logic
cells that can be viewed as pre-defined components, which combines a few inputs to
one or two outputs according to a Boolean logic function specified by a user defined
program. In its turn, individual cells are interconnected by a matrix of wires and pro-
grammable switches. The advantage of using a FPGA is that it gives hardware speed
to user applications.

A user’s design is implemented by specifying the logic function for each cell and
selectively closing the switches in the interconnect matrix. This is done by means of a
user program that defines the function of the circuit, usually written in VHDL.

VHDL [3] stands for VHSIC Hardware Description Language, where VHSIC
means Very High Speed Integrated Circuits. VHDL is a language used to model a
digital system, from a simple gate to a complete system.

3 Description of the System

Several approaches have been used to segment the images in the RoboCup domain.
The following modules (see figure 1) compose the vision system implemented: image
acquisition, thresholding, edge extraction, and chain-code segmentation.

Fig. 1. Block Description of the vision system.

3.1 Image Acquisition

The image acquisition in the developed system is made through the Phillips’
SAA7111 Video Input Processor. It is a low cost CMOS that receives analogical
video signal and transforms it in a digital output.

Its architecture combines a two-channel analog preprocessing circuit (with an anti-
aliasing filter, an automatic clamp and gain control), a digital multi-standard decoder
and a brightness/contrast/saturation control circuit. The decoder is based on the prin-
ciple of line-locked clock decoding and is able to decode TV signals (PAL BGHI,
PAL M, PAL N, NTSC M and NTSC N) into CCIR-601 compatible color component
values. In the vision system, the analog input is an NTSC N CVBS signal and the
digital output is an RGB 16-bit signal.

3.2 Image Processing Algorithms

The implementation of edge following algorithms based on Freeman chain coding [4]
was chosen because they provide area, perimeter, center of area, minimum enclosing
rectangle, orientation, shape factor and other valuable classification information. In
this section, algorithms to perform binary image edge following algorithms are pre-
sented.

3.2.1 Image Thresholding

The digital RGB 16 bit signal that composes the color image is converted to a 1 bit
signal by a simple color detection criteria: if the R, G and B values are in the desired
range, the output is true. Else, the output is false. This criteria is used by several re-
searchers [5] and generates a one bit image that will be used by the edge detection
algorithm.

3.2.2 Edge Detection

This algorithm apply an edge extracting operator in the image, replacing all the

white pixels in the binary image by black ones, unless they are in a black/white border.
The operator verifies four elements (2x2 mask) to determine if a point is in a border.
Table 1 presents six basic configurations of the sixteen possible combinations of four
elements of a binary image.

3.2.3 Edge following

This algorithm, through a procedure that follows the borders in the image, creates a
current of connected vectors (called chain) that envelops the objects in the image. The
perimeter can be mesured as the sum of the constituent vectors, while the area is
mesuring by summing the areas between each vector and a reference line (a procedure
similar to area integration). Moment of area and centroids can be found by similar
calculations. Finally, a shape factor, defined as (area)/(perimeter) are computed.
Figure 2 presents the result of the three steps aplied to the image of a ball.

Original

Threshold

Edges

Chain-Code

Fig. 2. The result of the image processing steps.

3.3 Data output.

The information about the objects in the image is stored on elements of an array with
32 bits elements, where 18 bits represents the position where area center of the object
is located (9 bits for the line and 9 for the column) and 14 bits register the size of the
minimum enveloping chain. This information can be sent to another FPGA module
such as the strategy module or to a RS-232 transmission module.

4 Translation to VHDL

While implementing the project the three modes to write a VHDL specification de-
scribed in section 2 were combined in the so-called mixed-mode design, where the
designer can implement part of the system just like a digital circuit and another part
just like an algorithm. As the chain-code algorithms have a considerable size, we pre-
sent here the simplification of the thresholding device.

The first part of the code defines the input and output signals, where there are 5 bits
for the red and blue signals and 6 bits for the green signal, and only one bit for the
output signal. The second part defines the function: a threshold that will accept only
colors with the red, green or blue with half the maximum intensity. If any of the most
significant bits is on, the output signal will be off.

Example of a VHDL program that implements a simplified thresholding device using the
dataflow method.

-- This part defines the input and output ports

Entity Threshold is

 PORT (R, B: IN BIT_VECTOR(0 TO 4);
 G : IN BIT_VECTOR(0 TO 5);
 I : OUT BIT
);
End Threshold;

-- This part defines the device function
Architecture Threshold of threshold Is
BEGIN
 I <= not (R(4) or B(4) or G(5));

End Threshold;

5 Experimental Results

The algorithms were tested using the simulation tool of the ALTERA MAX+PLUSII
software and on an Educational Board (figure 3). The simulation results of a 100 MHz
FPGA device implementing the vision algorithms, for a 320 x 240 pixels color image,
are presented in the table below.

Table 1. Time needed by each module to process an image with 320 x 240 pixels.

Module Time
Thresholding 770µs

Edge Extraction 2,41µs
Chain-Code

Segmentation
770µs

Total time 1,54ms

The table shows that the edge extraction is the fastest module. This happens

because its implementation processes a line at each cycle time. As the other modules
takes one cycle time to process each pixel their time are the same. Also, these results
were obtained assuming that modules are working sequentially: the edge extraction
starts when the image is binarized and the chain-code begins when the edge extraction
finishes.

Fig. 3. The ALTERA Education Board.

Finally, this table shows that the system can process 649 images (with 320 x 240

pixels) per second. Comparing with a straight forward implementation of the same

algorithms in C Language, working on a Pentium 200 computer with Linux OS, the
software took 33ms to process each image (21,5 times the FPGA time).

As for the quality of the results, the resulting images from the FPGA were similar
to the ones obtained using the software implementation.

6 Conclusion

This paper presented the translation of well-known Computer Vision algorithms to
VHDL and a working prototype that includes image acquisition and processing.

An efficiency comparison among the hardware-implemented and a software-
implemented (C language) system using the same algorithms showed that the first
system achieved a superior performance with the same quality. Associated with the
low cost of FPGA components (lower than a Video for Windows PC frame grabber),
the resulting system is a small-size device suited for the image processing in the F-180
and the F-2000 leagues.

Future works include the implementation of other Computer Vision algorithms such
as Blob Coloring in VHDL and final tests of the system on board a F180 Robot
Prototypes and Activemedia Pioneer 2 robots.

7 Acknowledgments

This project is supported by Fundação de Ciências Aplicadas – FCA-FEI under
grant number OS-5886 and by NSF/CNPq-ProTeM CC, project MAPPEL, grant
number 68003399-8. The authors would like to thank the undergraduate students who
took part in this project: Luis Maia Jr.., Paulo V. de Souza, Victor Antônio, and
Marcel Gomes.

References

1. Kitano, H. et al.: RoboCup: A challenge Problem for AI. AI Magazine, Vol. 18, No. 1,
Spring (1997) 73-85

2. Brown, S.; Rose, J.: Architecture of FPGAs and CPLDs: A Tutorial. IEEE Design and Test
of Computers, Vol. 13, No. 2 (1996) 42-57

3. Bhasker, J.: A VHDL Primer. Prentice Hall, Englewood Cliffs (1995)
4. Kitchin, P. W., Pugh, A.: Processing of Binary Images. In: Pugh, A. (ed.): Robot Vision.

Springer-Verlag, Berlin Heidelberg New York (1983) 21-42
5. Brusey, J.; Padgham, L.: Techniques for Obtaining Robust, Real-Time, Colour-Based

Vision for Robotics. In: Veloso, M., Pagello, E, Kitano, H. (eds.): RoboCup-99: Robot
Soccer World Cup III. Lecture Notes in Artificial Intelligence, Vol. 1856. Springer-Verlag,
Berlin Heidelberg New York (2000) 243-253

