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Abstract— In multirobot localization, the pose beliefs of two robots are updated whenever one robot detects
another one and measures their relative distance. This paper proposes the use of a recently proposed localization
algorithm that uses negative detection information to localize a group of four-legged Aibo robots in the domain of
the RoboCup Standard Platform Four-Legged Competition. Our aim is to test the performance of this algorithm
in a real world environment, where robots must use vision capabilities to detect the presence of other robots.
Experiments were made with two robots and with three robots, using a cascade of detections to update the
position of more than one of the robots. Experimental results show that negative detection localization allows
us to localize the robots in situations where other algorithms would fail, leading to an improvement of the
localization of real robots, working in a real world domain.
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1 Introduction

In order to perform their tasks, mobile robots need
to know their poses within the environment. To do
this, robots use their sensor measurements which
provide information about robot’s movement and
about the environment. In the multirobot local-
ization problem, each robot can use measurements
taken by all robots, in order to better estimate its
own pose. In this way, the main difference between
single robot and cooperative multiple robots local-
ization is that multirobot can achieve more infor-
mation than a single robot.

A recently proposed cooperative multirobot
localization (Odakura and Costa, 2006) makes use
of negative detection information, which consists
in the absence of detection information, which can
be incorporated into the localization of a group of
cooperative robots, in the form of the Multirobot
Markov Negative Detection Information Localiza-
tion algorithm.

The aim of this paper is to study this new de-
tection algorithm in a more complex domain, that
of the RoboCup Standard Platform Four-Legged
League (RoboCup Technical Committee, 2006),
where teams consisting of four Sony AIBO robots
operating fully autonomously and communicating
through a wireless network compete in a 6 x 4 m
field. This domain is one of many RoboCup chal-
lenges, which has been proven to be an important
domain for research, and where robot localization
techniques have been widely used.

This paper is organized as follows. In Section
2, the cooperative robot localization problem is
presented and the Markov localization technique
is introduced. The negative detection multirobot
localization is described in Section 3. The pro-
posed experiment and its results are presented in
Section 4. Finally, in Section 5, our conclusions
are derived and future works are presented.

2 Cooperative Robot Localization

The cooperative multirobot localization problem
consists in localizing each robot in a group within
the same environment, when robots share infor-
mation in order to improve localization accuracy.
Markov Localization (ML) was initially designed
for a single robot (Fox et al., 1999). An exten-
sion of ML that aims at solving the multirobot
problem (MML) is presented by Fox et al. (Fox
et al., 2000).

In MML, p(xt = x) denotes the robot’s belief
that it is at pose x at time t, where xt is a random
variable representing the robot’s pose at time t,
and x = (x, y, θ) is the pose of the robot. This
belief represents a probability distribution over all
the space of xt.

MML uses two models to localize a robot: a
motion model and an observation model. The mo-
tion model is specified as a probability distribution
p(xt = x|xt−1 = x′,at−1), where xt is a random
variable representing the robot’s pose at time t, at

is the action or movement executed by the robot



at time t. In ML the update equation is described
as:

p(x̄t = x) =
∑
x′

p(xt = x|xt−1 = x′,at−1)

p(xt−1 = x′), (1)

where p(x̄t = x) is the probability density func-
tion before incorporating the observation of the
environment at time t.

The observation model is used to incorporate
information from exteroceptive sensors, such as
proximity sensors and camera, and it is expressed
as p(xt = x|ot), where ot is an observation sensed
at time t. The update equation is described as:

p(xt = x) =
p(ot|xt = x)p(x̄t = x)∑
x′ p(ot|xt = x′)p(x̄t = x′)

, (2)

where p(xt = x) is the probability density function
after incorporating the observation of the environ-
ment at time t.

In order to accommodate multirobot cooper-
ation in ML it is necessary to add a detection
model to the previous models. The detection
model (Fox et al., 2000) is based on the assump-
tion that each robot is able to detect and iden-
tify other robots and furthermore, the robots can
communicate their probabilities distributions to
other robots. Let’s suppose that robot n detects
robot m and measures the relative distance be-
tween them, so:

p(xn
t = x) = p(xn

t−1 = x)∑
x′ p(xn

t−1 = x|xm
t−1 = x′, rn)p(xm

t−1 = x′),(3)

where xn
t represents the pose of robot n, xm

t rep-
resents the pose of robot m and rn denotes the
measured distance between robots. The calcula-
tion

∑
x′ p(xn

t−1 = x|xm
t−1 = x′, rn)p(xm

t−1 = x′)
describes the belief of robot m about the pose of
robot n. Similarly, the same detection is used to
update the pose of robot m.

To summarize, in the multirobot localization
algorithm each robot updates its pose belief when-
ever a new information is available in the follow-
ing Equation sequence: (1) is used when a motion
information is available; (2) is used when an envi-
ronment observation occurs; and when a detection
happens, both robots involved use (3) to update
their beliefs of poses.

Once a detection is made according to the de-
tection model, the two robots involved in the pro-
cess share their probabilities distributions and rel-
ative distance. This communication significantly
improves the localization accuracy, if compared to
a less communicative localization approach.

One disadvantage of this approach is that
detection information is shared only by the two
meeting robots and it is not used by the other
robots in the group. Odakura and Costa (2005)

Figure 1: Negative detection information.

have presented a detection model where all robots
of the group can benefit from a meeting of two
robots through the propagation of the meeting in-
formation. Other well known algorithms in coop-
erative multirobot localization are from Roumeli-
otis and Bekey (Roumeliotis and Bekey, 2002) and
Fox et al. (Fox et al., 2000), that use Kalman fil-
ter and Particle filter as localization algorithms,
respectively.

3 Negative Detection Localization

All sensor information provided to a single or mul-
tirobot in the Markov localization approach are
positive information in the sense that it represents
a sensor measurement of important features of the
environment. Negative information measurement
means that at a given time, the sensor is expected
to report a measurement but it did not.

Human beings often use negative information.
For example, if you are looking for someone in a
house, and you do not see the person in a room,
you can use this negative information as an evi-
dence that the person is not in that room, so you
should look for him/her in another place.

In the cooperative multirobot localization
problem, negative information can also mean the
absence of detections (in the case that a robot
does not detect another one). In this case, the
negative detection measurement can provide the
useful information that a robot is not located in
the visibility area of another robot.

Odakura and Costa (2006) proposed a neg-
ative detection model and its incorporation into
multirobot ML approach. Consider two robots
within a known environment and their field of
view. If robot 1 does not detect robot 2 at a given
point in time, a negative detection information is
reported, which states that robot 2 is not in the
visibility area of robot 1, as depicted in Figure 1.

The information gathered from Figure 1 is
true if we consider that there are no occlusions.
In order to account for occlusions it is necessary
to sense the environment to identify free areas or
occupied areas. If there is a free space on the visi-
bility area of a detection sensor, than there is not
an occlusion. Otherwise, if it is identified as an
occupied area it means that the other robot could
be occluded by another robot or an obstacle. In
this case it is possible to use geometric inference



Figure 2: Test environment: The IIIA–CSIC field
used during tests.

to determine which part of the visibility area can
be used as negative detection information.

Let’s suppose that robot m makes a negative
detection. The negative detection model, consid-
ering the visibility area of the robot and the oc-
clusion area, becomes:

p(xm−
t = x) =

p(d−t |xm
t = x,v,obs)p(xm

t = x)∑
x′ p(d−t |xm

t = x′,v,obs)p(xm
t = x′)

, (4)

where d−t is the event of not detecting any robot
and xm corresponds to the state of robot m, the
robot that reports the negative detection infor-
mation. The variables v and obs represent the
visibility area and the identified obstacles, respec-
tively.

Whenever a robot m does not detect another
robot k, we can update the probability distribu-
tion function of each k, with k 6= m, in the follow-
ing way:

p(xk
t = x) =

p(x̄k
t = x)p(xm−

t = x)∑
x′ p(x̄k

t = x′)p(xm−
t = x′)

, (5)

where xk, for k = 0, · · · , n, represents all robots
which were not detected.

In the case that a positive detection is re-
ported, the robots involved in the detection up-
date their beliefs according to (3).

The negative information has been applied to
target tracking using the event of not detecting a
target as evidence to update the probability den-
sity function (Koch, 2004). In that work a nega-
tive information means that the target is not lo-
cated in the visibility area of the sensor and since
the target is known to exist it is certainly out-
side this area. In robot localization domain, the
work of Hoffmann et al. (Hoffmann et al., 2005)
on negative information in ML considers as neg-
ative information the absence of landmark sensor
measurements. Occlusions are identified using a
visual sensor that scans colors of the ground to
determine if there is free area or obstacle. The

Figure 3: Robot detection: SIFT matching be-
tween the model (above) and the test image (be-
low).

environment is a soccer field in green with white
lines. So, if a different color is identified, it means
that an obstacle could be occluding the visibility
of a landmark.

Negative detection model allows solving cer-
tain localization problems that are unsolvable for
a group of robots that only relies on positive detec-
tion information. A typical situation is the case of
robots in different rooms, in a way that one robot
cannot detect the other.

4 Experiments in the RoboCup Standard
Platform League Domain

Soccer competitions, such as RoboCup, has been
proven to be an important challenge domain
for research, where localization techniques have
been widely used. The experiments in this work
were conducted in the domain of the RoboCup
Standard Platform Four-Legged League, using
the 2006 rules (RoboCup Technical Committee,
2006). In this domain, two teams consisting of
four Sony AIBO robots compete in a color-coded
field: the carpet is green, the lines are white, the
goals are yellow and blue. Cylindrical beacons are
placed on the edge of the field at 1/4 and 3/4 of
the length of the field. Considering only the white
lines on the floor, that are symmetric, the field,
shown in Figure 2, has dimensions 6 × 4 meters.
The robot environment model is based on a grid,
where each cell has dimensions of 0.3×0.3 meters,
and angular resolution of 90 degrees. It results in
a state space of dimension 18×12×4 = 864 states.

The robots used in this experiment were the
Sony Aibo ERS-7M3, a 576MHz MIPS R7000
based robot with 64 Mb of RAM, 802.11b wireless
ethernet and dimensions of 180 × 278 × 319 mm.
Each robot is equipped with a CMOS color cam-
era, X, Y, and Z accelerometers and 3 IR distance
sensors that can be used to measure the distance



(a)

(b)

Figure 4: First experiment: robot 1 at the center
of the field and two possible positions of robot 2.

to the walls in the environment.
The 416x320 pixel nose-mounted camera,

which has a field of vision 56.9o wide and 45.2o

high, is used as a detection sensor. In order to ver-
ify if there are any robots in the image and to mea-
sure their relative distance, we used the constel-
lation method proposed by Lowe, together with
its interest point detector and descriptor SIFT
(Lowe, 2004).

This approach is a single view object detection
and recognition system which has some interesting
characteristics for mobile robots, most significant
of which are the ability to detect and recognize
objects at the same time in an unsegmented image
and the use of an algorithm for approximate fast
matching. In this approach, individual descriptors
of the features detected in a test image are initially
matched to the ones stored in the object database
using the Euclidean distance. False matches are
rejected if the distance of the first nearest neighbor
is not distinctive enough when compared with that
of the second. In Figure 3, the matching features
between model and test images can be seen. The
presence of some outliers can also be observed.

In this domain, there are situations in which
the robots are not able to detect the color mark-
ers, such as the beacons or the goals (corner situ-
ations, for example). In these moments, only the

(a)

(b)

Figure 5: Images from the robot cameras: (a) Im-
age seen by robot 1. (b) Image seen by robot 2.

lines are visible, and the robots must cooperate to
overcome the difficulties found by the symmetry
of the field.

We first conducted an experiment with two
robots. Robot 1 is located at the center of the
field facing the yellow goal. At a given moment,
robot 1 knows accurately its pose, and robot 2 is
in doubt about being at the yellow goal area or
at blue goal area of the field. Figure 4 depicts
this situation and Figure 5(a) shows the image
from robot 1 camera. Due to the environment
symmetry it is impossible to robot 2 to find out
that its real pose is in the blue goal area of the
field, considering that the colored marks, goals or
beacons, are not in its field of view, as can be seen
in Figure 5(b). However, robot 2 would be able
to localize itself if negative detection information,
provided by robot 1, could be used to update its
pose belief.

Figures 6(a) and 6(b) show the probability
density function of robot 1 and robot 2, respec-
tively. In Figure 7(a) is shown the negative detec-
tion information derived from the belief of robot
1 and its visibility area. When robot 2 updates
its pose using the negative detection information
reported by robot 1, it becomes certain about its
pose, as shown in Figure 7(b).

The second experiment was conducted with
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Figure 6: (a) Probability density function of robot
1. (b) Probability density function of robot 2.

three robots. Robot 1 and robot 2 have the same
configuration as described in the previous experi-
ment and robot 3 is in doubt about being at the
top right corner or at the bottom left corner of the
field. Figure 8 depicts this situation. Due to the
environment symmetry it is impossible to robot 2
to find out that its real pose is in the blue goal area
and it is impossible to robot 3 to find out that its
real pose is at the top right corner of the field, con-
sidering that the colored marks, goals or beacons,
are not in their fields of view. However, robot 2
would be able to localize itself if negative detec-
tion information, provided by robot 1, could be
used to update its pose belief. Further than, once
robot 2 is certain about its pose, robot 3 would be
able to localize itself with negative detection.

Figure 7(b) show the probability density func-
tion of robot 2 after update its position with neg-
ative detection and Figure 9 show the probability
density function of robot 3. In Figure 10(a) is
shown the negative detection information derived
from the belief of robot 2 and its visibility area.
When robot 3 updates its pose using the negative
detection information reported by robot 2, it be-
comes certain about its pose, as shown in Figure
10(b).

The experiments described above show the
use of negative detection can improve localization
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Figure 7: (a) Negative detection information re-
ported by robot 1. (b) Probability density func-
tion of robot 2 after the incorporation of negative
detection information.

accuracy if compared with a less communicative
localization approach, as MML. In both experi-
ments all robots became certain about their poses
after the negative information exchange. If the
negative detection was not available, the uncer-
tainty robots would have to walk around until they
could see useful landmarks in field, before being
able to localize themselves.

5 Conclusions

Negative detection can be very useful to improve
localization in ambiguous situations, as shown by
the experiments. In both experiments, the robots
configurations illustrated that cooperative local-
ization, performed by negative detection, is the
only way to improve robot’s pose belief at that
moment. In other way, robots should move, and
wait until they can find useful marks to be able to
localize themselves. Moreover, we give a contribu-
tion in the direction of a precise localization, that
is one of the main requirements for mobile robot
autonomy.

The experiments described in this paper are
very initial ones, using the robots cameras to cap-
ture the images, and then a computer to analyze
the image and compute the robots poses, in a



Figure 8: Second experiment: possible positions
of robots 2 and 3.

0
5

10
15

20

0

5

10

15

0

0.5

1
R3

Figure 9: Probability density function of robot 3.

static manner. The first extension of this work
is to implement the negative detection localiza-
tion in a way to allow its use during a real game.
Finally, as part of our future work, we also plan to
investigate other forms of information to update
robot’s pose belief.
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