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Abstract. Research in Multi-Agents Systems (MAS) has been, from its

outset, concerned with coordinating intelligent behavior among a collec-

tion of autonomous intelligent agents. In the last years the use of on-line

learning approaches to achieve coordination has attracted an increasing

attention. The purpose of this work is to use a Reinforcement Learn-

ing approach in the job of learning how to coordinate agent actions in a

MAS, aiming to minimize the task execution time. To achieve this goal, a

control agent with learning capabilities is introduced in an agent society.

The domain on which the system is applied consists of visually guided

assembly tasks such as picking up pieces, performed by a manipulator

working in an assembly cell. Since RL requires a large amount of learning

trials, the approach was tested in a simulated domain. From the experi-

ments carried out we conclude that RL is a feasible approach leading to

encouraging results.

1 Introduction

Research in Multi-Agents Systems (MAS) has been, from its outset, concerned
with coordinating intelligent behavior among a collection of autonomous intelli-
gent agents (Bond and Gasser 1988). Systems have been traditionally organized
in ways to achieve this coordination: in centralized and hierarchical organiza-
tions, in authority structures, market-like structures or in communities with
rules of behavior.

Whereas previous research on MAS focused on o�-line design of agent co-
ordination mechanisms (Boutilier and Brafman 1997, Decker and Lesser 1995,
Goldman and Rosenschein 1994), in the last years the use of on-line learning
approaches to achieve coordination has attracted an increasing attention.

One of the most successful approaches applied to the multi-agent coordina-
tion problem is Reinforcement Learning - RL (Sen and Sekaran 1998). In an RL
scenario, an agent learns on-line by trial-and-error performing the following ba-
sic steps: (i) based on its perceptions, the agent chooses and performs an action
on the environment; (ii) the agent receives back from the environment a scalar
feedback based on past actions; (iii) the agent then updates its internal mapping
from perceptions to actions based on the rewards and punishments it received
from the environment, aiming at a feedback maximization.
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The purpose of this work is to use an RL approach in the job of learning how
to coordinate agent actions in a MAS, aiming to minimize the task execution
time. To achieve this goal, a control agent with learning capabilities is introduced
in the agent society.

The MAS used in this work is based on the VIBRA architecture that was
developed in previous group work with the objective of integrating visual percep-
tion, planning, reaction and execution to solve real world problems (Reali-Costa
et al. 1998). VIBRA is organized with authority structures and rules of behav-
ior and has been applied in the assembly domain, which consists of visually
guided tasks such as picking up pieces, performed by a manipulator working in
an assembly cell.

The reminder of this paper is organized as follows. Section 2 describes the
assembly task domain used in the experiments. An overview of the VIBRA
Architecture is given in Section 3, which also describes the problems with its
initial implementation and the solution adopted. Section 4 reviews some key
concepts concerning reinforcement learning. Section 5 presents highlights of the
related approaches to the multi-agent coordination problem. Section 6 presents
the experimental setup, the experiments performed in the simulated domain
and the results obtained. Finally, Section 7 summarizes some important points
learned from this research and outlines future work.

2 The Application Domain

The assembly domain can be characterized as a complex and reactive planning
task, where agents have to generate and execute plans, coordinate its activities to
achieve a common goal and perform online resource allocation. The diÆculty in
the execution of the assembly task rests on possessing adequate image processing
and understanding capabilities and appropriately dealing with interruptions and
human interactions with the con�guration of the work table. This domain has
been the subject of previous group work in the LSI Flexible Assembly Cell shown
in Figure 1 (Reali-Costa et al. 1998).

Fig. 1. One of the Assembly Cell manipulators.
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In the assembly task, given a number of parts arriving on the table (from a
conveyor belt, for example), the goal is to select pieces from the table, clean and
pack them. The pieces can have sharp edges as molded metal or plastic objects
usually do in their manufacturing process. To clean a piece means to remove
these unwanted edges or other objects that obstructs packing. In this way, there
is no need to clean all the pieces before packing them, but only the ones that
will be packed and are not clean.

While the main task is being executed, unexpected human interactions can
happen. A human can change the table con�guration by adding (or removing)
new parts to it. In order to avoid collisions, both the cleaning and packing
tasks can have their execution interrupted until the work area is free of collision
contingencies.

The assembly domain is a typical case of a task that can be decomposed into
a set of independent tasks. To reduce the complexity of the problem, it can be
assumed that each task of the solution corresponds to a desired behavior which
is independent and interacts with other behaviors. Therefore, the solution of this
assembly task can be decomposed into three subtasks:

{ the assembly: if a piece on the table is clean, pick it up with the manipulator
and put it on a desired location, packing it;

{ the cleaning: if a piece have sharp edges, clean it before packing;
{ the collision avoidance: to avoid collisions of the manipulator with objects
that move in the workspace (other manipulators or humans), aiming the
preservation of the system's physical integrity.

In the assembly cell the goal of the assembly and the type of pieces involved
in it can change, e.g., from the packing task to the assembly of a known object or
the selection of pieces by shape or color. Frequent applications are the assembly
of small industrial products as mechanical parts or toys. It's worthy noting that
an assembly cell can be part of a larger assembly line, accomplishing part of
a complex production. Whereas the chosen domain is the one of an assembly
cell, the architecture can be applied to other domains, e.g., autonomous mobile
robots.

While existing research has not yet produced an ultimate paradigm for the
distribution and coordination of tasks that an intelligent robotic system must
posses, we propose a Multi-Agent approach where tasks, as well as the relation-
ship among them, are translated into autonomous agents which communicates
with each other, composing a society of autonomous agents. This model is de-
scribed in the next section.

3 The VIBRA Architecture

The VIBRA - VIsion Based Reactive Architecture can be viewed as a society of
Autonomous Agents (AAs), each of them depicting a problem-solving behavior
due to its speci�c competence, and collaborating with each other in order to
orchestrate the process of achieving its goals (Reali-Costa et al. 1998).
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Multi-Agent Systems (MAS) de�ne the agent's organization in a society,
where relationships of authority, communication, control, and information ow
are described. The VIBRA architecture is a multi-agent system, which processes
incoming asynchronous goal requests dictated by sensory data, prioritizes them,
temporally suspends lower priority actions, and interleaves compatible behaviors.

In this architecture an AA is composed of eight components (see Figure 2):
a Communicator module, responsible for interactions between AAs and the
planner-executor module; a Planner-Executor module, responsible for generating
and executing a plan to solve the task that will exhibit the behavior expected
from the AA; Primitive Agents (PAs), that executes simple tasks, including sens-
ing and acting; Protocols and languages of interaction, which de�ne the commu-
nication capability of the agent; the Authority Structure, that consists of the
relation resource-agent priority level; the Conducting Rules of the society de�ne
priority levels for each pair resource-agent; the Set of AAs in the society, con-
taining the list of AAs in the society; and a Symbolic representation of the world,
that represents the knowledge about the environment needed by each agent.

Fig. 2. Structure of the Autonomous Agent.

This model is used to de�ne all AAs in the society, no matter what their be-
havior is. A special agent in the society can create, change or destroy the society,
by adding or deleting agents, and controlling the resources at the initialization
or termination phase of the society. As conditions change, new agents can be
implemented and activated in the society during the system execution. On the
other hand, those agents that are not performing well can be disabled.

An important way by which agents interact is through resource allocation,
performed on line by the system. A resource is de�ned as a part of the system that
can be time-shared by di�erent agents. The resources in this assembly application
are the camera and the manipulator, which are shared by the concurrent tasks
assembly, cleaning and collision avoidance.

No conicts arises due to a request for the camera resource by any of them.
On the other hand, the manipulator is highly disputed and hence the tasks have
to obey a speci�c policy for conict resolution, since only one task should control
the manipulator in a given moment. This policy, which is deeply related with
the coordination of the behaviors, involves conducting rules and an authority
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structure. This policy enables the agents to decide which agent should have the
control of a resource at each moment.

The authority structure de�nes the agent's priority level in the use of a
speci�c resource. The authority structure is domain dependent: the priority levels
vary for each agent and each resource. In general, reactive tasks should have a
precedence over deliberative tasks, and in this way the authority structure can be
a rank ranging from the most reactive agent to the most deliberative one. In the
assembly domain, the collision avoidance task should have the highest priority in
order to prevent accidents, with the cleaning task second with a higher priority
than the assembly task.

The explicit use of social rules in the de�nition of an agent enables it to
achieve its dynamically-acquired goals without interfering with others. These
rules de�ne how the authority structure can be used to control the communi-
cation and share resources among agents. In the VIBRA architecture we adopt
the following three simple rules:

{ Rule # 1: Only one agent can control a resource in a given moment.
{ Rule # 2: At any moment any agent can request control of a resource from
an agent with lower authority than itself.

{ Rule # 3: An agent can only request control of a resource from a higher
authority agent if that agent is releasing control.

3.1 Problems in the former solution

One of the drawbacks of the described solution is that VIBRA uses a �xed,
prede�ned authority structure. Once established that one agent has precedence
over another, the system will always behave in the same way, no matter if it
results in an eÆcient performance. However, in a real application, if an unwanted
object is not preventing an assembly action, it is not necessary to perform a
previous cleaning action.

To solve this problem we replaced the �xed authority structure by a dynamic
one, through the addiction of a learning task to the architecture, resulting in L-
VIBRA. The learning task aims to minimize the execution time of assembly
tasks, selecting the best order in which agents should perform their actions.

This learning task is introduced in the architecture in the form of a control
agent that takes part in the society and learns the best action policy based on the
task to be performed and the perceived state of the environment. Since collision
avoidance is an extremely reactive task, L-VIBRA preserves its precedence over
cleaning and assembly tasks.

We use Reinforcement Learning to learn how to coordinate agent actuation,
deciding among cleaning and assembly actions. The next section reviews some
key concepts concerning reinforcement learning.

4 Reinforcement Learning

Let us consider an autonomous agent interacting with its environment via per-
ception and action. On each interaction step the agent senses the current state
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s of the environment, and chooses an action a to perform. The action a alters
the state s of the environment, and a scalar reinforcement signal r (a reward
or penalty) is provided to the agent to indicate the desirability of the result-
ing state. The goal of the agent in an RL problem is to learn an action policy
that maximizes the long-run sum of values of the reinforcement signal from any
starting state.

One of the most diÆcult problems facing an RL agent is temporal credit
assignment, where the agent must be able to determine which one of its actions
is desirable based on delayed rewards. Here we de�ne one general formulation
of the RL problem, based on a discrete time, �nite state, �nite action Markov
Decision Process (MDP), since problems with delayed reinforcement are well
modeled as MDPs.

The learner's environment can be modeled by a MDP represented by a 4-
tuple hS;A;R; T i (see Kaelbling et al. 1996, Mitchell 1997), where:

{ S is a set of states
{ A is a set of actions
{ R is a scalar reward function, R : S �A! R
{ T is a state transition function, T : S�A! �(S), where a member of �(S)
is a probability distribution over S. T (s; a; s0) represents the probability of
moving from state s to s0 by performing action a.

The model is Markov if the state transition function and the reward function
are independent of any previous environment states or agent actions. As de�ned,
the state transition function and the reward function can be nondeterministic
functions.

The task of an RL agent is to learn a policy � : S ! A that maps the current
state s into the desirable action(s) a to be performed in s. In RL, the pol-
icy � should be learned through trial-and-error interactions of the agent with a
dynamic environment, that is, the RL learner must explicitly explore its environ-
ment. This way, the learner faces the fundamental tradeo� between exploration
to gather new information and exploitation to maximize its cumulative reward.
A strategy for exploration should be de�ned and used in the RL problem to
balance between exploration and exploitation.

In L-VIBRA, we adopted the in�nite horizon model to de�ne the expected
cumulative value V

�(st) achieved by following an arbitrary policy � from an
arbitrary initial state st. The In�nite horizon discounted model takes the long-
run reward of the agent into account, and also includes a constant  (where
0 �  < 1) that determines the relative value of delayed versus immediate
rewards (Mitchell 1997, Kaelbling et al. 1996):

V
�(st) � E

"
1X
i=0


i

rt+i

#
:

One strategy to learn the optimal policy �
� when the model (T and R) is

not known in advance is known as Q Learning. It allows the agent to learn the
evaluation function Q, instead of V �.
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Let Q�(s; a) be the reward received upon performing action a in state s, plus
the discounted value of following the optimal policy thereafter:

Q
�(s; a) � R(s; a) + 

X
s
02S

T (s; a; s0)V �(s0):

Since V �(s) � maxaQ
�(s; a), the optimal policy �� is �� � argmaxaQ

�(s; a).
Rewriting Q�(s; a) in a recursive form:

Q
�(s; a) � R(s; a) + 

X
s
02S

T (s; a; s0)max
a

0

Q
�(s0; a0):

Let Q̂ be the learner's estimate of Q�(s; a). The Q learning algorithm itera-
tively approximates Q̂, i.e., the Q̂ values will converge with probability 1 to Q�,
provided the system can be modeled as a MDP, the reward function is bounded
(9c 2 R; (8s; a); jR(s; a)j < c), and actions are chosen so that every state-action
pair is visited an in�nite number of times. The Q learning rule is:

Q̂(s; a) Q̂(s; a) + �

h
r + max

a
0

Q̂(s0; a0)� Q̂(s; a)
i
;

where s is the current state; a is the action performed in s; r is the reward
received; s0 is the new state;  is the discount factor (0 �  < 1); � = 1=(1 +
visits(s; a)), where visits(s; a) is the total number of times this state-action pair
has been visited up to and including the current iteration.

An interesting property of the Q learning is that, although the exploration-
exploitation tradeo� must be addressed in Q learning, the Q̂ values will converge
to Q�, independent of the strategy of exploration employed, providing all state-
action pairs are visited often enough. (Mitchell 1997).

5 Related Work

Some researchers have used RL for developing e�ective behavior coordination in
physical robots (Maes and Brooks 1991, Matari�c 1997, Matari�c 1998).

Maes and Brooks (1991) applied a statistical RL technique using immediate
positive and negative feedback in order to learn when to activate behaviors for
walking on a six-legged robot. The learning algorithm employed was completely
distributed, so that each behavior tried to learn when it should become active.

Matari�c (1997, 1998) chooses the concurrent multi-robot learning domain
for her experiments. She uses conditions and behaviors to e�ectively diminish
the otherwise prohibitively large learning space. In order to provide richer and
more continuous reinforcement and to deal with the credit assignment problem,
shaped reinforcement in the form of heterogeneous reward functions and progress
estimators were used. Her approach is demonstrated on two multi-robot learning
experiments.

Sen & Sekaran (1998) focus on reinforcement learning coordination resulted
from individual and concurrent learning by multiple, autonomous, and non-
communicating agents. They show that an uniform RL algorithm suÆces as
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a coordination mechanism in both cooperative and non-cooperative domains,
using immediate as well as delayed feedback. They demonstrate that agents can
develop e�ective policies to coordinate their actions without explicit informa-
tion sharing. A particular limitation identi�ed in the used RL schemes is the
inability of independent learning to develop e�ective global coordination when
agent actions are strongly coupled, feedback is delayed, and there is one or few
optimal behavior combinations.

A signi�cant percentage of the research in evolving global coordination in
multi-agent scenarios have concentrated on cooperative learning between com-
municating agents where agents share their knowledge or experiences. In our
solution we adopted a centralized approach, where a specialized learning agent
is added to the agent society, and it is responsible for the action control.

6 Experimental Description and Results

Since RL requires a large amount of learning trials, which is prohibitive to be
executed in physical robots, the approach was tested in a simulated domain. We
adopted a discrete workspace where each cell in this grid can have one state of
the following con�guration set Si = f�; P; T; PTg, where:

{ Si is the set of possible states of the i-th cell;
{ � represents an empty cell;
{ P represents a cell with a piece ready to be packed;
{ T represents a cell with trash (unwanted objects, loose edges, etc.);
{ PT represents a cell with a piece that should be cleaned before packing
(piece and trash).

In this system, the actions that can be executed are: (i) moveTo(X;Y ) -
place the manipulator over the cell at position X;Y , (ii) assemble - pick up and
pack the piece at the current position and (iii) clean - clean the current cell.
The learning agent performing the Q learning builds a Q� table(s; a) recording
the reward received upon performing action a in the state s, plus the discounted
value of following an action policy thereafter. The size of the table is:

Q tableSize= N � C
N �Na, where:

{ N is the number of cells;
{ C is the number of possible con�gurations of each cell;
{ Na is the number of possible actions.

Experiments were performed considering di�erent numbers of workspace
cells, learning successfully an optimal action policy in each experiment under
the assembly task domain. The goal of the task is reached when there is no more
piece left to be assembled. Increasing cell numbers require an increasing iteration
time in the learning algorithms.

In order to illustrate the results we present a simple example where a two cell
workspace (first and last) is considered. In this example, the possible actions
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to be performed can be simpli�ed to move-to-�rst, move-to-last, assemble and
clean. We use this example as it is the smallest possible con�guration, producing
a Q-table of 128 entries (N = 2, C = 4, Na = 4).

On each time step the agent chooses one action from the set of four actions
to be performed. We encourage exploration at the beginning of the learning
process (20% of actions) and then this rate is decreased over time (rate of 0:99).
The rewards received depend on the perceived con�guration of the world and
the executed action. The learner is penalized every time it chooses: (i) a moving
action to be performed and the manipulator is over a P or PT cell; (ii) a cleaning
action and it is over a P or an empty cell; (iii) an assembly action and the current
cell con�guration is T , PT or empty. On the other hand, the learner is rewarded
every time it chooses: (i) a moving action that brings the manipulator over a
P or PT cell; (ii) a cleaning action and it is over a PT cell; (iii) an assembly
action and the current cell con�guration is P .

Table 1 presents the results of this learning for three states: in the �rst state
([P; T ]) the �rst cell contains a piece and the last contains an unwanted object;
the second state ([PT; T ]) the �rst cell contains a piece and some trash and
the last contains an unwanted object; and in the last state ([T; P ]) the �rst cell
contains unwanted object and the last contains an a piece. In all these states the
manipulator is over the �rst cell.

Table 1. Results of the Q Learning for three di�erent states where the manipulator is

over the �rst cell.

Action [P; T ] [PT; T ] [T; P ]

assemble 1.00 0.70 0.78

clean 0.89 1.90 0.79

move to �rst { 0.10 0.69 0.79

move to last 0.81 1.49 0.90

We can see in the table that the Q learning produced a result where the
appropriate action is the one with higher value in the Q-table, i.e., assemble

in the �rst case, clean in the second one and move-to-last in the third case.
It can also be noticed that move-to-�rst is the action with lower value in the
�rst and second case, since the manipulator is already in that position. In this
example the Q learning algorithm took less than 20000 iterations to converge to
the optimal solution.

7 Conclusion and Future Work

From the experiments carried out we conclude that the use of a control agent
based on a Reinforcement Learning approach in the L-VIBRA architecture al-
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lowed a dynamic control structure for the coordination of agent actions in a
MAS.

The results obtained showed that the system was able to minimize the task
execution time in several con�gurations under acceptable learning times. How-
ever, the size of the search space needed grows exponentially with the number
of cells. To cope with real world problems an alternative to the lookup tables is
the use of some compact form to represent the value function. It is widely known
that a Multilayer Perceptron Neural Network, trained with backpropagation, is
an universal function approximator and it seems to be a good solution for this
problem.

Finally, future works include the distribution of the learning and the control
processes among agents. We intend to study the use of Markov games as a
framework for multi-agent reinforcement learning.
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