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Abstract. The purpose of this work is to use a Swarm Algorithm that
combines Reinforcement Learning (RL) approach with Heuristic Search
to coordinate agent actions in a MAS, creating plans that minimize the
execution time of an assembly, and also reducing the learning time of
each new plan.

To achieve this goal, a swarm algorithm that combines Heuristic Search
with RL — the Ant Colony System algorithm (ACS) — was modified to
be able to cope with planning when several agents are involved. This
algorithm was modified to solve a combinatorial optimization problem
where interleaved execution is needed. In the ACS, the knowledge ac-
quired during experimentation is stored in one pheromone table. The
modification proposed here consists of using several pheromone tables,
one for each possible operation, instead of only one table.

This modification allows the use of a priori domain knowledge to decom-
pose the assembly problem in subtasks, reducing the search space and
the learning time of each new plan.

The domain on which the system is applied consists of visually guided as-
sembly tasks (pick up, put down and clean), performed by a manipulator
working in an assembly cell.

Experiments were carried out in a simulated domain. Results show that
the combination of RL, Heuristic Search and the use of explicit domain
information about states and actions to minimize the search space used in
the proposed algorithm presents better results than any of the techniques
alone.



1 Introduction

In the last years the use of Swarm Intelligence for solving several kinds of prob-
lems has attracted an increasing attention [1, 2, 4] of the AT community. Being an
approach that studies the emergence of collective intelligence in groups of simple
agents, it emphasizes the flexibility, robustness, distributedness, autonomy and
direct or indirect interactions among relatively simple agents.

As a promissing way of designing intelligent systems, researchers are applying
this technique to problems such as: communication networks, combinatorial op-
timization, robotics, on-line learning to achieve robot coordination, adaptative
task allocation and data clustering.

The purpose of this work is to use a Swarm Algorithm that combines Rein-
forcement Learning (RL) approach with Heuristic Search to:

— coordinate agent actions in a MAS used in an assembly domain, creating
plans that minimize the execution time, reducing the number of movements
made by the robotic manipulator.

— reduce the learning time of each new plan.

To be able to learn the best assembly plan in the shortest possible time a
well known Swarm Algorithm — the Ant Colony System (ACS) Algorithm [6] —
was modified to be able to cope with planning when several agents are involved.
The ACS algorithm is based on the metaphor of ant colonies and was initially
proposed to solve the TSP problem. In it, several ants are allowed to travel
between the cities of a TSP problem, and the path of the ant that have the
shortest lenght is reinforced. It is considered one of the faster algorithms to
solve TSP problems [6] and has been sucessfully applied to several optimisation
problems, such as Asymetric TSPs, Network and Vehicle Routing and Graph
Colouring.

The reminder of this paper is organized as follows. Section 2 describes the
assembly task domain used in the experiments. Section 3 reviews some key con-
cepts concerning Swarm Intelligence algorithms. Section 4 presents the ACS al-
gorithm. Section 5 describes the porposed algorithm and section 6 presents the
experimental setup, the experiments performed in the simulated domain and the
results obtained. Finally, Section 7 summarizes some important points learned
from this research and outlines future work.

2 The Application Domain

The assembly domain can be characterized as a complex and reactive planning
task, where agents have to generate and execute plans, coordinate its activities to
achieve a common goal and perform online resource allocation. The difficulty in
the execution of the assembly task rests on possessing adequate image processing
and understanding capabilities and appropriately dealing with interruptions and
human interactions with the configuration of the work table. This domain has



Fig. 1. One of the Assembly Cell manipulators.

been the subject of previous group work in the LSI Flexible Assembly Cell shown
in Figure 1

In the assembly task, given a number of parts arriving on the table (from a
conveyor belt, for example), the goal is to select pieces from the table, clean and
pack them. The pieces can have sharp edges as molded metal or plastic objects
usually do in their manufacturing process. To clean a piece means to remove
these unwanted edges or other objects that obstructs packing. In this way, there
is no need to clean all the pieces before packing them, but only the ones that
will be packed and are not clean.

While the main task is being executed, unexpected human interactions can
happen. A human can change the table configuration by adding (or removing)
new parts to it. In order to avoid collisions, both the cleaning and packing
tasks can have their execution interrupted until the work area is free of collision
contingencies.

The assembly domain is a typical case of a task that can be decomposed into
a set of independent tasks: the assembly (if a piece on the table is clean, pick
it up with the manipulator and put it on a desired location, packing it); the
cleaning (if a piece have sharp edges, clean it before packing) and the collision
avoidance.

In the assembly cell the goal of the assembly and the type of pieces involved
in it can change, e.g., from the packing task to the assembly of a known object
or the selection of pieces by shape or color.

One of the problems to be solved when a problem is decomposed in several
tasks is how to coordinate the task allocation process in the system.

One possible solution to this problem is to use a fixed, predefined authority
structure. Once established that one agent has precedence over another, the
system will always behave in the same way, no matter if it results in an inefficient
performance.



This solution was adopted in the ViBRA - VIsion Based Reactive Archi-
tecture [10], which was developed in previous group work with the objective
of integrating visual perception, planning, reaction and execution to solve real
world problems, such as the assembly domain.

The ViBRA architecture proposes that a system can be viewed as a society of
Autonomous Agents (AAs), each of them depicting a problem-solving behavior
due to its specific competence, and collaborating with each other in order to
orchestrate the process of achieving its goals. ViBRA is organized with authority
structures and rules of behavior

However, this solution have several drawbacks, e.g., in a real application, if
an unwanted object is not preventing an assembly action, it is not necessary to
perform a previous cleaning action.

Another solution to the task allocation problem is to use a Reinforcement
Learning Algorithm to learn the best route to do the assembly, taking into
account the assembly and the cleaning tasks an thus selecting the best order
in which this agents should perform their actions. This solution was adopted
in the L-ViBRA [11], where a control agent that implemented the Q-Learning
algorithm was introduced in the agents society.

The use of the Q-Learning algorithm in L-ViBRA resulted in a system that
was able to create the optimized assembly plan needed, but that was not fast
in producing these plans. As each time the workspace configuration is changed
the system must learn again the assembly plan, a high performance learning
algorithm is needed.

As this routing problem is similar to a combinatorial Travelling Salesman
Problem, a new system —the ANT-ViBRA — was created by modifying the ACS
algorithm, one of the faster algorithms used to solve TSP problems [6], and using
it to plan the best route do perform the assembly.

Finally, since collision avoidance is an extremely reactive task, its precedence
over cleaning and assembly tasks is preserved. The next section reviews some
key concepts concerning Swarm Algorithms.

3 Swarm Intelligence

Based on the social insect metaphor for solving problems, Swarm Intelligence
has become a exciting topic to researchers in the last five years. [1, 2, 4].

The most common Swarm Methods are based on the observation of ant
colonies behavior. In this methods, a set of simple agents, called ants, coop-
erate to find good solutions to combinatorial optimization problems.

Swarm Intelligence can be viewed as a major new paradigm in control and
optimization, that can be compared to the artificial neural network paradigm.
“An ant colony is a ’connectionist’ system, that is, one in which individual units
are connected to each other according to a certain pattern”[2]. Some differences
that can be noted between ANNs and Swarm Algorithms are [2]:

— the mobility of the units, which can be a mobile robot or a Softbot moving
on the Internet, is an essential feature of Swarm Algorithms;



— the dynamic nature of the connectivity pattern;

— the use of feedback from the environment as a medium of co-ordination and
communication;

— and the use of pheromone — ants which discover new paths leave traces
which informs the other ants whether the path is a good one or not — which
facilitates the design of distributed optimization systems.

Researchers are applying this Swarm Intelligence techniques in the most var-
ied fields, from automation systems to the management of production processes.
Some of them are:

— Routing problems [12]: using the Swarm Intelligence paradigm is possible to
feed in artificial ants which moves in communications networks and identify
congested nodes. For example, if an ant has been delayed a long time because
it went through a highly congested part of the network, it will update the
corresponding routing-table entries with a warning. The use of Ant Algo-
rithms in communication networks or vehicle routing and logistics problems
is now called Ant Colony Routing - ACR .

— Combinatorial optimization problems such as the Travelling Salesman Prob-
lem [6], the Quadratic Assignment Problem [9] and Graph Colouring [3].
The techniques to solve these problems were inspired by food retrieval in
ants and are called Ant Colony Optimization — ACO.

— In several problems involving robotics, on-line learning to achieve robot co-
ordination and transport [7], Adaptative Task Allocation [8].

— Data Clustering.

In the next section one of the most used Ant algorithm - the ACS - is de-
scribed.

4 The Ant Colony System Algorithm

The ACS - Ant Colony System is a Swarm Intelligence algorithm proposed by
Dorigo and Gambardella [6] for combinatorial optimization based on the ob-
servation of ant colonies behavior. It has been applied to various combinatorial
optimization problems like the symmetric and asymmetric traveling salesman
problems (TSP and ATSP respectively), and the quadratic assignment problem
[9]. In the remaining of this section the TSP is used to describe the algorithm.

The most important concept of the ACS is the 7(r,s), called pheromone,
which is positive real value associated to the edge (r, s). It is the ACS counterpart
of Q-learning Q-values, and indicates how useful it is to move to the city s
when in city 7. 7(r, s) values are updated at run time by the artificial ants. The
pheromone acts as a memory, allowing the ants to cooperate indirectly.

Another important value is the heuristic n(r, s) associated to edge (r,s). It
represents an heuristic evaluation of which moves are better. In the TSP n(r, s)
is the inverse of the distance from r to s, §(r, s).



An agent k positioned in the city r moves to city s using the following rule,
called state transition rule:

w€Jy(r) (]_)

arg max 7(r,u) +n(r,u)’ if ¢ <0
s =
S otherwise

where:

— B is a parameter which weigh the relative importance of the learned pheromone
and the heuristic distance values (8 > 0).

— Ji(r) is the list of cities still to be visited by the ant k, where r is the current
city. This list is used to constrain agents to visit cities only once.

— ¢ is a value chosen randomly with uniform probability in [0,1] and g (0 <
go < 1) is a parameter that defined the exploitation/exploration rate: the
higher go the smaller the probability to make a random choice.

— S is a random variable selected according to a probability distribution given
by:
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This transition rule is meant to favor transition using edges with a large
amount of pheromone and which are short.

In order to learn the pheromone values, the ants in ACS update the values
of 7(r,s) in two situations: the local update step and the global update step.

The ACS local updating rule is applied at each step of the construction of
the solution, while the ants visit edges and change theis pheromone levels using
the following rule:

7(r,8) < (L =p)-7(r,5) + p- A7(r, 5) (3)

where 0 < p < 1 is a parameter, the learning step.
The term A7 (r,s) can be defined in two different ways:

1. A7(r,s) =v-max.c,(s) 7(8,2)
Using this equation the local update rule becames similar to the Q-learning
update, being composed by a reinforcement term and the discounted evalu-
ation of the next state (with v as the discount factor). The only difference
is that the set of available actions in state s, (the set Ji(s)) is a function of
the previous history of agent k. When the ACS uses this update it is called
Ant-Q.

2. The other possibility to implement the local update is to use A7(r,s) = 79,
where 79 is the initial pheromone level. The authors states that both A7 (r, s)
resulted in similar performance.



Once the ants have completed the tour, the pheromone level 7 is updated by
the following global update rule:

T(r,s) < (1 —a)r(r,s) + a- Ar(r,s) 4)

where « is the pheromone decay parameter (similar to the discount factor in
Q-Learning) and Ar(r,s) is a delayed reinforcement, usually the inverse of the
lenght of the best tour. The delayed reinforcement is given only to the tour done
by the best agent — only the edges belonging to the best tour will receive more
pheromones (reinforcement).

The pheromone updating formulas intends to place a greater amount of fer-
omone on the shortest tours, achieving this by simulating the adition of new
pheromone deposited by ants and evaporation.

In short, the system works as follows: after the ants are positioned in the
cities, each ant builds a tour. During the construction of the tour, the local
updating rule is applied modifying the pheromone level of the edges. When the
ants have finished their tours, the global updating rule is applyed, modifying
again the pheromone levels. This cycle is repeated until no improovement is
obtained or a fixed number of iteractions were reached. The ACS algorithm is
presented below. Finally, the Dorigo and Di Caro proposed a more abstraction
version of this algorithm (without implementation details), called the Ant Colony
Optimization — ACO — Meta Heuristic, which outlines the working model of any
system that “uses a colony of artificial ants to cooperate in finding good solutions
to dificult discrete optimization problems”[5].

The ACS algorithm

Initialize the pheromone table, the ants and the list of cities.
Loop /* an iteration */
Position each ant in the starting node.
Loop /* a step */
Chose next state using equation (1).
Update list of visited cities Jk.
Apply local update to pheromones using equation (3).
Until (ants have a complete tour).
Apply global pheromone update using equation (4).
Until (Final Condition is reached).

Common critic related to this work is that the ACS algorithm is not an MDP.
In this way, it cannot be prooved that the system converges to the optimal policy.

5 The Proposed Algorithm

To be able to to cope with a combinatorial optimization problem where inter-
leaved execution is needed, the ACS algorithm was modified by the introduction
of several pheromone tables, one for each operation that the system can perform,
and of several Jj, lists, that are used to record completed tasks.



This modification allows the use of a priori domain knowledge to decompose
the assembly problem in subtasks, explicitando as acoes e estados.

This modification is possible because the a priori domain knowledge includes:
how to decompose the problem in subtasks; the relation between operation and
states; and the relation between any two operations, including the order in which
they can be performed. In the assembly domain the operations and relations
among them are:

— Pick-Up: to pick up a tenon. After this operation only the Put-Down oper-
ation can be used.

— Put-Down: to put down a tenon over a mortise. In the domain, the manip-
ulator never puts down a piece in a place that is not a free mortise. After
this operation both Pick-Up and Clean can be used.

— Clean: to clean a certain position, removing unwanted material to the trash
can and staying over it. After this operation both Pick-Up and Clean can
be used.

The use of knowledge about the relations between operations and states
reduces the learning time because it makes explicit which part of the search
space must be analised before making a transition: instead of searching one
table with all the possibilities, the modified algorithm search only the tables of
the operations which are possible to be performed from the present state.

The modified algorithm is the similar to the presented in the last section,
with the following changes:

— Initialization takes care of several pheromone tables, the ants and the lists
of completed tasks.

— Instead of directly choosing the next state using the state transition rule
(equation 1), the next state is choosen among the possible operations. This
is done using a precondition check list that is not on the table. If there are
several possible operations, then equation (1) is used.

— The local update is applied to pheromone table of the executed operation.

— Instead of updating the list of visited cities Jj, the list corresponding to the
executed operation is updated.

For example, in an assembly task where one manipulator is used to pick and
place pieces, there are 2 tables, one for picking up tenons and another for placing
them over the mortises. There are also two lists, one for tenons remaining to be
picked and another to free positions. In this case the two operations are mutually
excludent, so the system works one step picking up and the next step placing
the tenon.

A more complex system is one with assembly and cleaning tasks. In this
case, at the start the system can choose between 2 operations: pick up a tenon
or remove an unwanted object. Which one will be done depends on the result of
the state transition rule (equation 1).

The next section presents these examples in detail and also the results of the
implemented system.



6 Experimental Description and
Results

The approach was tested in a simulated domain, a discrete workspace where
each cell in this grid can have one piece, one tenon or pieces with trash on it.

Experiments were performed considering different numbers of workspace cells,
learning successfully an optimal action policy in each experiment under the as-
sembly task domain. In order to illustrate the results we present three examples.
In all of them, the goal to find sequence in which the assembly actions must
be performed in order to minimize execution the distance the manipulator grip
travels to make the assembly (which is the same as the time to perform the as-
sembly). One iteraction finishes when there is no more piece left to be assembled,
and the system stops when the result does not improove for a certain number of
iteractions or reaches a maximum number of iteractions.
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Fig. 2. Configuration of example 1 to 3 (from left to right).

In the first example (figure 2-a) there are initially 4 pieces and 4 tenons on
the border of a square with side 9. As there is no thrash, the operations that
can be performed are to pick up a tenon or put it down over a mortise.

The result (figure 3-a) shows that the modified ACS algorithm took less than
6 iterations to converge to the optimal solution, which is 36 (the total distance
between pieces and tenons). The same problem took 332 steps to achieve the
same result using the Q-learning algorithm. This shows that the combination of
both reinforcement and heuristics yelds good results.

The second example (figure 2-b) is similar to the first, but now there are 8
tenons and 8 mortises spread in a random disposition on the grid. Rhe result
(figure 3-b) of the Modified ACS is also the best one, compared with Q-learning.

Finally, example 3 (figure 2-c) presents a configuration where the system must
clean some grids before performing the assembly. The tenons and mortises are
on the same position as example 1, but there are trashes that must be removed
over the tenon in the position (line = 1, colunm = 10) and over the mortise
(6, 1). The operations are pick up, put down and clean. this last one moves the
manipulator over the position to be cleaned, picks the undesired object and puts
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Fig. 3. Result of the Modified ACS for examples 1 to 3 (from left to right).

E:

it on the thrashcan, located at position (1, 11). Again, we can see in the result
(figure 3-c) that the modified ACS is the best result.

In the 3 examples above the parameters used were the same: the local up-
date rule used was the Ant-Q rule; the exploitation/exploration rate is 0.9; the
learning step p is set at 0.1; the discount factor « is 0.3; the maximum number of
iteractions allowed was set to 1000 and the results were build during 15 epochs.

The system was implemented on a AMD K6-1I-500MHz, with 256 MB RAM
memory, using Linux and GNU gcc. The time to run each iteraction is less than
0.5 seconds for examples 1 and 3. Increasing the number of tenons require an
increasing iteration time in the learning algorithms.

7 Conclusion and Future Works

The implementation of the ViBRA architecture with the Modified ACS Algo-
rithm led to a system where agents exists at two levels: on a higher level are the
autonomous agents of the VIBRA Architecture (assembler, cleaner and collision
avoider) and on a lower level, the agents based on the ACS ants, which are used
to optimize the work of the higher level agents.

From the experiments carried out we conclude that the combination of RL,
Heuristic Search and the use of explicit domain information about states and
actions to minimize the search space used in the proposed algorithm presents
better results than any of the techniques alone.

The results obtained showed that the system was able to minimize the task
execution time in several configurations, also minimizing the learning times when
compared to other RL techniques.

Future works includes the implementation of this architecture in a Flexible

Assembly Cell with a robotic manipulator and the extension of the system to
control teams of mobile robots performing foraging tasks.
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