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t. The purpose of this work is to use a Swarm Algorithm that
ombines Reinfor
ement Learning (RL) approa
h with Heuristi
 Sear
hto 
oordinate agent a
tions in a MAS, 
reating plans that minimize theexe
ution time of an assembly, and also redu
ing the learning time ofea
h new plan.To a
hieve this goal, a swarm algorithm that 
ombines Heuristi
 Sear
hwith RL { the Ant Colony System algorithm (ACS) { was modi�ed tobe able to 
ope with planning when several agents are involved. Thisalgorithm was modi�ed to solve a 
ombinatorial optimization problemwhere interleaved exe
ution is needed. In the ACS, the knowledge a
-quired during experimentation is stored in one pheromone table. Themodi�
ation proposed here 
onsists of using several pheromone tables,one for ea
h possible operation, instead of only one table.This modi�
ation allows the use of a priori domain knowledge to de
om-pose the assembly problem in subtasks, redu
ing the sear
h spa
e andthe learning time of ea
h new plan.The domain on whi
h the system is applied 
onsists of visually guided as-sembly tasks (pi
k up, put down and 
lean), performed by a manipulatorworking in an assembly 
ell.Experiments were 
arried out in a simulated domain. Results show thatthe 
ombination of RL, Heuristi
 Sear
h and the use of expli
it domaininformation about states and a
tions to minimize the sear
h spa
e used inthe proposed algorithm presents better results than any of the te
hniquesalone.



21 Introdu
tionIn the last years the use of Swarm Intelligen
e for solving several kinds of prob-lems has attra
ted an in
reasing attention [1, 2, 4℄ of the AI 
ommunity. Being anapproa
h that studies the emergen
e of 
olle
tive intelligen
e in groups of simpleagents, it emphasizes the 
exibility, robustness, distributedness, autonomy anddire
t or indire
t intera
tions among relatively simple agents.As a promissing way of designing intelligent systems, resear
hers are applyingthis te
hnique to problems su
h as: 
ommuni
ation networks, 
ombinatorial op-timization, roboti
s, on-line learning to a
hieve robot 
oordination, adaptativetask allo
ation and data 
lustering.The purpose of this work is to use a Swarm Algorithm that 
ombines Rein-for
ement Learning (RL) approa
h with Heuristi
 Sear
h to:{ 
oordinate agent a
tions in a MAS used in an assembly domain, 
reatingplans that minimize the exe
ution time, redu
ing the number of movementsmade by the roboti
 manipulator.{ redu
e the learning time of ea
h new plan.To be able to learn the best assembly plan in the shortest possible time awell known Swarm Algorithm { the Ant Colony System (ACS) Algorithm [6℄ {was modi�ed to be able to 
ope with planning when several agents are involved.The ACS algorithm is based on the metaphor of ant 
olonies and was initiallyproposed to solve the TSP problem. In it, several ants are allowed to travelbetween the 
ities of a TSP problem, and the path of the ant that have theshortest lenght is reinfor
ed. It is 
onsidered one of the faster algorithms tosolve TSP problems [6℄ and has been su
essfully applied to several optimisationproblems, su
h as Asymetri
 TSPs, Network and Vehi
le Routing and GraphColouring.The reminder of this paper is organized as follows. Se
tion 2 des
ribes theassembly task domain used in the experiments. Se
tion 3 reviews some key 
on-
epts 
on
erning Swarm Intelligen
e algorithms. Se
tion 4 presents the ACS al-gorithm. Se
tion 5 des
ribes the porposed algorithm and se
tion 6 presents theexperimental setup, the experiments performed in the simulated domain and theresults obtained. Finally, Se
tion 7 summarizes some important points learnedfrom this resear
h and outlines future work.2 The Appli
ation DomainThe assembly domain 
an be 
hara
terized as a 
omplex and rea
tive planningtask, where agents have to generate and exe
ute plans, 
oordinate its a
tivities toa
hieve a 
ommon goal and perform online resour
e allo
ation. The diÆ
ulty inthe exe
ution of the assembly task rests on possessing adequate image pro
essingand understanding 
apabilities and appropriately dealing with interruptions andhuman intera
tions with the 
on�guration of the work table. This domain has
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Fig. 1. One of the Assembly Cell manipulators.been the subje
t of previous group work in the LSI Flexible Assembly Cell shownin Figure 1In the assembly task, given a number of parts arriving on the table (from a
onveyor belt, for example), the goal is to sele
t pie
es from the table, 
lean andpa
k them. The pie
es 
an have sharp edges as molded metal or plasti
 obje
tsusually do in their manufa
turing pro
ess. To 
lean a pie
e means to removethese unwanted edges or other obje
ts that obstru
ts pa
king. In this way, thereis no need to 
lean all the pie
es before pa
king them, but only the ones thatwill be pa
ked and are not 
lean.While the main task is being exe
uted, unexpe
ted human intera
tions 
anhappen. A human 
an 
hange the table 
on�guration by adding (or removing)new parts to it. In order to avoid 
ollisions, both the 
leaning and pa
kingtasks 
an have their exe
ution interrupted until the work area is free of 
ollision
ontingen
ies.The assembly domain is a typi
al 
ase of a task that 
an be de
omposed intoa set of independent tasks: the assembly (if a pie
e on the table is 
lean, pi
kit up with the manipulator and put it on a desired lo
ation, pa
king it); the
leaning (if a pie
e have sharp edges, 
lean it before pa
king) and the 
ollisionavoidan
e.In the assembly 
ell the goal of the assembly and the type of pie
es involvedin it 
an 
hange, e.g., from the pa
king task to the assembly of a known obje
tor the sele
tion of pie
es by shape or 
olor.One of the problems to be solved when a problem is de
omposed in severaltasks is how to 
oordinate the task allo
ation pro
ess in the system.One possible solution to this problem is to use a �xed, prede�ned authoritystru
ture. On
e established that one agent has pre
eden
e over another, thesystem will always behave in the same way, no matter if it results in an ineÆ
ientperforman
e.



4 This solution was adopted in the ViBRA - VIsion Based Rea
tive Ar
hi-te
ture [10℄, whi
h was developed in previous group work with the obje
tiveof integrating visual per
eption, planning, rea
tion and exe
ution to solve realworld problems, su
h as the assembly domain.The ViBRA ar
hite
ture proposes that a system 
an be viewed as a so
iety ofAutonomous Agents (AAs), ea
h of them depi
ting a problem-solving behaviordue to its spe
i�
 
ompeten
e, and 
ollaborating with ea
h other in order toor
hestrate the pro
ess of a
hieving its goals. ViBRA is organized with authoritystru
tures and rules of behaviorHowever, this solution have several drawba
ks, e.g., in a real appli
ation, ifan unwanted obje
t is not preventing an assembly a
tion, it is not ne
essary toperform a previous 
leaning a
tion.Another solution to the task allo
ation problem is to use a Reinfor
ementLearning Algorithm to learn the best route to do the assembly, taking intoa

ount the assembly and the 
leaning tasks an thus sele
ting the best orderin whi
h this agents should perform their a
tions. This solution was adoptedin the L-ViBRA [11℄, where a 
ontrol agent that implemented the Q-Learningalgorithm was introdu
ed in the agents so
iety.The use of the Q-Learning algorithm in L-ViBRA resulted in a system thatwas able to 
reate the optimized assembly plan needed, but that was not fastin produ
ing these plans. As ea
h time the workspa
e 
on�guration is 
hangedthe system must learn again the assembly plan, a high performan
e learningalgorithm is needed.As this routing problem is similar to a 
ombinatorial Travelling SalesmanProblem, a new system { the ANT-ViBRA { was 
reated by modifying the ACSalgorithm, one of the faster algorithms used to solve TSP problems [6℄, and usingit to plan the best route do perform the assembly.Finally, sin
e 
ollision avoidan
e is an extremely rea
tive task, its pre
eden
eover 
leaning and assembly tasks is preserved. The next se
tion reviews somekey 
on
epts 
on
erning Swarm Algorithms.3 Swarm Intelligen
eBased on the so
ial inse
t metaphor for solving problems, Swarm Intelligen
ehas be
ome a ex
iting topi
 to resear
hers in the last �ve years. [1, 2, 4℄.The most 
ommon Swarm Methods are based on the observation of ant
olonies behavior. In this methods, a set of simple agents, 
alled ants, 
oop-erate to �nd good solutions to 
ombinatorial optimization problems.Swarm Intelligen
e 
an be viewed as a major new paradigm in 
ontrol andoptimization, that 
an be 
ompared to the arti�
ial neural network paradigm.\An ant 
olony is a '
onne
tionist' system, that is, one in whi
h individual unitsare 
onne
ted to ea
h other a

ording to a 
ertain pattern"[2℄. Some di�eren
esthat 
an be noted between ANNs and Swarm Algorithms are [2℄:{ the mobility of the units, whi
h 
an be a mobile robot or a Softbot movingon the Internet, is an essential feature of Swarm Algorithms;



5{ the dynami
 nature of the 
onne
tivity pattern;{ the use of feedba
k from the environment as a medium of 
o-ordination and
ommuni
ation;{ and the use of pheromone { ants whi
h dis
over new paths leave tra
eswhi
h informs the other ants whether the path is a good one or not { whi
hfa
ilitates the design of distributed optimization systems.Resear
hers are applying this Swarm Intelligen
e te
hniques in the most var-ied �elds, from automation systems to the management of produ
tion pro
esses.Some of them are:{ Routing problems [12℄: using the Swarm Intelligen
e paradigm is possible tofeed in arti�
ial ants whi
h moves in 
ommuni
ations networks and identify
ongested nodes. For example, if an ant has been delayed a long time be
auseit went through a highly 
ongested part of the network, it will update the
orresponding routing-table entries with a warning. The use of Ant Algo-rithms in 
ommuni
ation networks or vehi
le routing and logisti
s problemsis now 
alled Ant Colony Routing { ACR .{ Combinatorial optimization problems su
h as the Travelling Salesman Prob-lem [6℄, the Quadrati
 Assignment Problem [9℄ and Graph Colouring [3℄.The te
hniques to solve these problems were inspired by food retrieval inants and are 
alled Ant Colony Optimization { ACO.{ In several problems involving roboti
s, on-line learning to a
hieve robot 
o-ordination and transport [7℄, Adaptative Task Allo
ation [8℄.{ Data Clustering.In the next se
tion one of the most used Ant algorithm - the ACS - is de-s
ribed.4 The Ant Colony System AlgorithmThe ACS - Ant Colony System is a Swarm Intelligen
e algorithm proposed byDorigo and Gambardella [6℄ for 
ombinatorial optimization based on the ob-servation of ant 
olonies behavior. It has been applied to various 
ombinatorialoptimization problems like the symmetri
 and asymmetri
 traveling salesmanproblems (TSP and ATSP respe
tively), and the quadrati
 assignment problem[9℄. In the remaining of this se
tion the TSP is used to des
ribe the algorithm.The most important 
on
ept of the ACS is the �(r; s), 
alled pheromone,whi
h is positive real value asso
iated to the edge (r; s). It is the ACS 
ounterpartof Q-learning Q-values, and indi
ates how useful it is to move to the 
ity swhen in 
ity r. �(r; s) values are updated at run time by the arti�
ial ants. Thepheromone a
ts as a memory, allowing the ants to 
ooperate indire
tly.Another important value is the heuristi
 �(r; s) asso
iated to edge (r; s). Itrepresents an heuristi
 evaluation of whi
h moves are better. In the TSP �(r; s)is the inverse of the distan
e from r to s, Æ(r; s).



6 An agent k positioned in the 
ity r moves to 
ity s using the following rule,
alled state transition rule:s = (arg maxu2Jk(r)�(r; u) � �(r; u)� if q � q0S otherwise (1)where:{ � is a parameter whi
h weigh the relative importan
e of the learned pheromoneand the heuristi
 distan
e values (� > 0).{ Jk(r) is the list of 
ities still to be visited by the ant k, where r is the 
urrent
ity. This list is used to 
onstrain agents to visit 
ities only on
e.{ q is a value 
hosen randomly with uniform probability in [0,1℄ and q0 (0 �q0 � 1) is a parameter that de�ned the exploitation/exploration rate: thehigher q0 the smaller the probability to make a random 
hoi
e.{ S is a random variable sele
ted a

ording to a probability distribution givenby: pk(r; s) =8>><>>: [�(r; u)℄ � [�(r; u)℄�Xu2Jk(r) [�(r; u)℄ � [�(r; u)℄� if s 2 Jk(r)0 otherwise (2)This transition rule is meant to favor transition using edges with a largeamount of pheromone and whi
h are short.In order to learn the pheromone values, the ants in ACS update the valuesof �(r; s) in two situations: the lo
al update step and the global update step.The ACS lo
al updating rule is applied at ea
h step of the 
onstru
tion ofthe solution, while the ants visit edges and 
hange theis pheromone levels usingthe following rule: �(r; s) (1� �) � �(r; s) + � ���(r; s) (3)where 0 < � < 1 is a parameter, the learning step.The term ��(r; s) 
an be de�ned in two di�erent ways:1. ��(r; s) = 
 �maxz2Jk(s) �(s; z)Using this equation the lo
al update rule be
ames similar to the Q-learningupdate, being 
omposed by a reinfor
ement term and the dis
ounted evalu-ation of the next state (with 
 as the dis
ount fa
tor). The only di�eren
eis that the set of available a
tions in state s, (the set Jk(s)) is a fun
tion ofthe previous history of agent k. When the ACS uses this update it is 
alledAnt-Q.2. The other possibility to implement the lo
al update is to use ��(r; s) = �0,where �0 is the initial pheromone level. The authors states that both ��(r; s)resulted in similar performan
e.



7On
e the ants have 
ompleted the tour, the pheromone level � is updated bythe following global update rule:�(r; s) (1� �)�(r; s) + � ���(r; s) (4)where � is the pheromone de
ay parameter (similar to the dis
ount fa
tor inQ-Learning) and ��(r; s) is a delayed reinfor
ement, usually the inverse of thelenght of the best tour. The delayed reinfor
ement is given only to the tour doneby the best agent { only the edges belonging to the best tour will re
eive morepheromones (reinfor
ement).The pheromone updating formulas intends to pla
e a greater amount of fer-omone on the shortest tours, a
hieving this by simulating the adition of newpheromone deposited by ants and evaporation.In short, the system works as follows: after the ants are positioned in the
ities, ea
h ant builds a tour. During the 
onstru
tion of the tour, the lo
alupdating rule is applied modifying the pheromone level of the edges. When theants have �nished their tours, the global updating rule is applyed, modifyingagain the pheromone levels. This 
y
le is repeated until no improovement isobtained or a �xed number of itera
tions were rea
hed. The ACS algorithm ispresented below. Finally, the Dorigo and Di Caro proposed a more abstra
tionversion of this algorithm (without implementation details), 
alled the Ant ColonyOptimization { ACO { Meta Heuristi
, whi
h outlines the working model of anysystem that \uses a 
olony of arti�
ial ants to 
ooperate in �nding good solutionsto di�
ult dis
rete optimization problems"[5℄.The ACS algorithmInitialize the pheromone table, the ants and the list of 
ities.Loop /* an iteration */Position ea
h ant in the starting node.Loop /* a step */Chose next state using equation (1).Update list of visited 
ities Jk.Apply lo
al update to pheromones using equation (3).Until (ants have a 
omplete tour).Apply global pheromone update using equation (4).Until (Final Condition is rea
hed).Common 
riti
 related to this work is that the ACS algorithm is not an MDP.In this way, it 
annot be prooved that the system 
onverges to the optimal poli
y.5 The Proposed AlgorithmTo be able to to 
ope with a 
ombinatorial optimization problem where inter-leaved exe
ution is needed, the ACS algorithm was modi�ed by the introdu
tionof several pheromone tables, one for ea
h operation that the system 
an perform,and of several Jk lists, that are used to re
ord 
ompleted tasks.



8 This modi�
ation allows the use of a priori domain knowledge to de
omposethe assembly problem in subtasks, expli
itando as a
oes e estados.This modi�
ation is possible be
ause the a priori domain knowledge in
ludes:how to de
ompose the problem in subtasks; the relation between operation andstates; and the relation between any two operations, in
luding the order in whi
hthey 
an be performed. In the assembly domain the operations and relationsamong them are:{ Pi
k-Up: to pi
k up a tenon. After this operation only the Put-Down oper-ation 
an be used.{ Put-Down: to put down a tenon over a mortise. In the domain, the manip-ulator never puts down a pie
e in a pla
e that is not a free mortise. Afterthis operation both Pi
k-Up and Clean 
an be used.{ Clean: to 
lean a 
ertain position, removing unwanted material to the trash
an and staying over it. After this operation both Pi
k-Up and Clean 
anbe used.The use of knowledge about the relations between operations and statesredu
es the learning time be
ause it makes expli
it whi
h part of the sear
hspa
e must be analised before making a transition: instead of sear
hing onetable with all the possibilities, the modi�ed algorithm sear
h only the tables ofthe operations whi
h are possible to be performed from the present state.The modi�ed algorithm is the similar to the presented in the last se
tion,with the following 
hanges:{ Initialization takes 
are of several pheromone tables, the ants and the listsof 
ompleted tasks.{ Instead of dire
tly 
hoosing the next state using the state transition rule(equation 1), the next state is 
hoosen among the possible operations. Thisis done using a pre
ondition 
he
k list that is not on the table. If there areseveral possible operations, then equation (1) is used.{ The lo
al update is applied to pheromone table of the exe
uted operation.{ Instead of updating the list of visited 
ities Jk, the list 
orresponding to theexe
uted operation is updated.For example, in an assembly task where one manipulator is used to pi
k andpla
e pie
es, there are 2 tables, one for pi
king up tenons and another for pla
ingthem over the mortises. There are also two lists, one for tenons remaining to bepi
ked and another to free positions. In this 
ase the two operations are mutuallyex
ludent, so the system works one step pi
king up and the next step pla
ingthe tenon.A more 
omplex system is one with assembly and 
leaning tasks. In this
ase, at the start the system 
an 
hoose between 2 operations: pi
k up a tenonor remove an unwanted obje
t. Whi
h one will be done depends on the result ofthe state transition rule (equation 1).The next se
tion presents these examples in detail and also the results of theimplemented system.



96 Experimental Des
ription andResultsThe approa
h was tested in a simulated domain, a dis
rete workspa
e whereea
h 
ell in this grid 
an have one pie
e, one tenon or pie
es with trash on it.Experiments were performed 
onsidering di�erent numbers of workspa
e 
ells,learning su

essfully an optimal a
tion poli
y in ea
h experiment under the as-sembly task domain. In order to illustrate the results we present three examples.In all of them, the goal to �nd sequen
e in whi
h the assembly a
tions mustbe performed in order to minimize exe
ution the distan
e the manipulator griptravels to make the assembly (whi
h is the same as the time to perform the as-sembly). One itera
tion �nishes when there is no more pie
e left to be assembled,and the system stops when the result does not improove for a 
ertain number ofitera
tions or rea
hes a maximum number of itera
tions.
= Tenons= Mortises = Tenons= Mortises = Trash= Tenons= Mortises

TrashCan

(a) (b) (
)Fig. 2. Con�guration of example 1 to 3 (from left to right).In the �rst example (�gure 2-a) there are initially 4 pie
es and 4 tenons onthe border of a square with side 9. As there is no thrash, the operations that
an be performed are to pi
k up a tenon or put it down over a mortise.The result (�gure 3-a) shows that the modi�ed ACS algorithm took less than6 iterations to 
onverge to the optimal solution, whi
h is 36 (the total distan
ebetween pie
es and tenons). The same problem took 332 steps to a
hieve thesame result using the Q-learning algorithm. This shows that the 
ombination ofboth reinfor
ement and heuristi
s yelds good results.The se
ond example (�gure 2-b) is similar to the �rst, but now there are 8tenons and 8 mortises spread in a random disposition on the grid. Rhe result(�gure 3-b) of the Modi�ed ACS is also the best one, 
ompared with Q-learning.Finally, example 3 (�gure 2-
) presents a 
on�guration where the system must
lean some grids before performing the assembly. The tenons and mortises areon the same position as example 1, but there are trashes that must be removedover the tenon in the position (line = 1, 
olunm = 10) and over the mortise(6, 1). The operations are pi
k up, put down and 
lean. this last one moves themanipulator over the position to be 
leaned, pi
ks the undesired obje
t and puts
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(a) (b) (
)Fig. 3. Result of the Modi�ed ACS for examples 1 to 3 (from left to right).it on the thrash
an, lo
ated at position (1, 11). Again, we 
an see in the result(�gure 3-
) that the modi�ed ACS is the best result.In the 3 examples above the parameters used were the same: the lo
al up-date rule used was the Ant-Q rule; the exploitation/exploration rate is 0.9; thelearning step � is set at 0.1; the dis
ount fa
tor � is 0.3; the maximum number ofitera
tions allowed was set to 1000 and the results were build during 15 epo
hs.The system was implemented on a AMD K6-II-500MHz, with 256 MB RAMmemory, using Linux and GNU g

. The time to run ea
h itera
tion is less than0.5 se
onds for examples 1 and 3. In
reasing the number of tenons require anin
reasing iteration time in the learning algorithms.7 Con
lusion and Future WorksThe implementation of the ViBRA ar
hite
ture with the Modi�ed ACS Algo-rithm led to a system where agents exists at two levels: on a higher level are theautonomous agents of the ViBRA Ar
hite
ture (assembler, 
leaner and 
ollisionavoider) and on a lower level, the agents based on the ACS ants, whi
h are usedto optimize the work of the higher level agents.From the experiments 
arried out we 
on
lude that the 
ombination of RL,Heuristi
 Sear
h and the use of expli
it domain information about states anda
tions to minimize the sear
h spa
e used in the proposed algorithm presentsbetter results than any of the te
hniques alone.The results obtained showed that the system was able to minimize the taskexe
ution time in several 
on�gurations, also minimizing the learning times when
ompared to other RL te
hniques.Future works in
ludes the implementation of this ar
hite
ture in a FlexibleAssembly Cell with a roboti
 manipulator and the extension of the system to
ontrol teams of mobile robots performing foraging tasks.
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