
ANT-ViBRA: Using a Swarm algorithm tooordinate assembly tasks in a MASReinaldo A. C. Bianhi and Anna H. Reali-CostaLaborat�orio de T�enias Inteligentes - LTI/PCSEsola Polit�enia da Universidade de S~ao PauloAv. Prof. Luiano Gualberto, trav. 3, 158. 05508-900 S~ao Paulo - SP, Brazil.frbianhi�usp.br, anna.reali�poli.usp.brhttp://www.lti.ps.usp.br/Abstrat. The purpose of this work is to use a Swarm Algorithm thatombines Reinforement Learning (RL) approah with Heuristi Searhto oordinate agent ations in a MAS, reating plans that minimize theexeution time of an assembly, and also reduing the learning time ofeah new plan.To ahieve this goal, a swarm algorithm that ombines Heuristi Searhwith RL { the Ant Colony System algorithm (ACS) { was modi�ed tobe able to ope with planning when several agents are involved. Thisalgorithm was modi�ed to solve a ombinatorial optimization problemwhere interleaved exeution is needed. In the ACS, the knowledge a-quired during experimentation is stored in one pheromone table. Themodi�ation proposed here onsists of using several pheromone tables,one for eah possible operation, instead of only one table.This modi�ation allows the use of a priori domain knowledge to deom-pose the assembly problem in subtasks, reduing the searh spae andthe learning time of eah new plan.The domain on whih the system is applied onsists of visually guided as-sembly tasks (pik up, put down and lean), performed by a manipulatorworking in an assembly ell.Experiments were arried out in a simulated domain. Results show thatthe ombination of RL, Heuristi Searh and the use of expliit domaininformation about states and ations to minimize the searh spae used inthe proposed algorithm presents better results than any of the tehniquesalone.



21 IntrodutionIn the last years the use of Swarm Intelligene for solving several kinds of prob-lems has attrated an inreasing attention [1, 2, 4℄ of the AI ommunity. Being anapproah that studies the emergene of olletive intelligene in groups of simpleagents, it emphasizes the exibility, robustness, distributedness, autonomy anddiret or indiret interations among relatively simple agents.As a promissing way of designing intelligent systems, researhers are applyingthis tehnique to problems suh as: ommuniation networks, ombinatorial op-timization, robotis, on-line learning to ahieve robot oordination, adaptativetask alloation and data lustering.The purpose of this work is to use a Swarm Algorithm that ombines Rein-forement Learning (RL) approah with Heuristi Searh to:{ oordinate agent ations in a MAS used in an assembly domain, reatingplans that minimize the exeution time, reduing the number of movementsmade by the roboti manipulator.{ redue the learning time of eah new plan.To be able to learn the best assembly plan in the shortest possible time awell known Swarm Algorithm { the Ant Colony System (ACS) Algorithm [6℄ {was modi�ed to be able to ope with planning when several agents are involved.The ACS algorithm is based on the metaphor of ant olonies and was initiallyproposed to solve the TSP problem. In it, several ants are allowed to travelbetween the ities of a TSP problem, and the path of the ant that have theshortest lenght is reinfored. It is onsidered one of the faster algorithms tosolve TSP problems [6℄ and has been suessfully applied to several optimisationproblems, suh as Asymetri TSPs, Network and Vehile Routing and GraphColouring.The reminder of this paper is organized as follows. Setion 2 desribes theassembly task domain used in the experiments. Setion 3 reviews some key on-epts onerning Swarm Intelligene algorithms. Setion 4 presents the ACS al-gorithm. Setion 5 desribes the porposed algorithm and setion 6 presents theexperimental setup, the experiments performed in the simulated domain and theresults obtained. Finally, Setion 7 summarizes some important points learnedfrom this researh and outlines future work.2 The Appliation DomainThe assembly domain an be haraterized as a omplex and reative planningtask, where agents have to generate and exeute plans, oordinate its ativities toahieve a ommon goal and perform online resoure alloation. The diÆulty inthe exeution of the assembly task rests on possessing adequate image proessingand understanding apabilities and appropriately dealing with interruptions andhuman interations with the on�guration of the work table. This domain has



3

Fig. 1. One of the Assembly Cell manipulators.been the subjet of previous group work in the LSI Flexible Assembly Cell shownin Figure 1In the assembly task, given a number of parts arriving on the table (from aonveyor belt, for example), the goal is to selet piees from the table, lean andpak them. The piees an have sharp edges as molded metal or plasti objetsusually do in their manufaturing proess. To lean a piee means to removethese unwanted edges or other objets that obstruts paking. In this way, thereis no need to lean all the piees before paking them, but only the ones thatwill be paked and are not lean.While the main task is being exeuted, unexpeted human interations anhappen. A human an hange the table on�guration by adding (or removing)new parts to it. In order to avoid ollisions, both the leaning and pakingtasks an have their exeution interrupted until the work area is free of ollisionontingenies.The assembly domain is a typial ase of a task that an be deomposed intoa set of independent tasks: the assembly (if a piee on the table is lean, pikit up with the manipulator and put it on a desired loation, paking it); theleaning (if a piee have sharp edges, lean it before paking) and the ollisionavoidane.In the assembly ell the goal of the assembly and the type of piees involvedin it an hange, e.g., from the paking task to the assembly of a known objetor the seletion of piees by shape or olor.One of the problems to be solved when a problem is deomposed in severaltasks is how to oordinate the task alloation proess in the system.One possible solution to this problem is to use a �xed, prede�ned authoritystruture. One established that one agent has preedene over another, thesystem will always behave in the same way, no matter if it results in an ineÆientperformane.



4 This solution was adopted in the ViBRA - VIsion Based Reative Arhi-teture [10℄, whih was developed in previous group work with the objetiveof integrating visual pereption, planning, reation and exeution to solve realworld problems, suh as the assembly domain.The ViBRA arhiteture proposes that a system an be viewed as a soiety ofAutonomous Agents (AAs), eah of them depiting a problem-solving behaviordue to its spei� ompetene, and ollaborating with eah other in order toorhestrate the proess of ahieving its goals. ViBRA is organized with authoritystrutures and rules of behaviorHowever, this solution have several drawbaks, e.g., in a real appliation, ifan unwanted objet is not preventing an assembly ation, it is not neessary toperform a previous leaning ation.Another solution to the task alloation problem is to use a ReinforementLearning Algorithm to learn the best route to do the assembly, taking intoaount the assembly and the leaning tasks an thus seleting the best orderin whih this agents should perform their ations. This solution was adoptedin the L-ViBRA [11℄, where a ontrol agent that implemented the Q-Learningalgorithm was introdued in the agents soiety.The use of the Q-Learning algorithm in L-ViBRA resulted in a system thatwas able to reate the optimized assembly plan needed, but that was not fastin produing these plans. As eah time the workspae on�guration is hangedthe system must learn again the assembly plan, a high performane learningalgorithm is needed.As this routing problem is similar to a ombinatorial Travelling SalesmanProblem, a new system { the ANT-ViBRA { was reated by modifying the ACSalgorithm, one of the faster algorithms used to solve TSP problems [6℄, and usingit to plan the best route do perform the assembly.Finally, sine ollision avoidane is an extremely reative task, its preedeneover leaning and assembly tasks is preserved. The next setion reviews somekey onepts onerning Swarm Algorithms.3 Swarm IntelligeneBased on the soial inset metaphor for solving problems, Swarm Intelligenehas beome a exiting topi to researhers in the last �ve years. [1, 2, 4℄.The most ommon Swarm Methods are based on the observation of antolonies behavior. In this methods, a set of simple agents, alled ants, oop-erate to �nd good solutions to ombinatorial optimization problems.Swarm Intelligene an be viewed as a major new paradigm in ontrol andoptimization, that an be ompared to the arti�ial neural network paradigm.\An ant olony is a 'onnetionist' system, that is, one in whih individual unitsare onneted to eah other aording to a ertain pattern"[2℄. Some di�erenesthat an be noted between ANNs and Swarm Algorithms are [2℄:{ the mobility of the units, whih an be a mobile robot or a Softbot movingon the Internet, is an essential feature of Swarm Algorithms;



5{ the dynami nature of the onnetivity pattern;{ the use of feedbak from the environment as a medium of o-ordination andommuniation;{ and the use of pheromone { ants whih disover new paths leave traeswhih informs the other ants whether the path is a good one or not { whihfailitates the design of distributed optimization systems.Researhers are applying this Swarm Intelligene tehniques in the most var-ied �elds, from automation systems to the management of prodution proesses.Some of them are:{ Routing problems [12℄: using the Swarm Intelligene paradigm is possible tofeed in arti�ial ants whih moves in ommuniations networks and identifyongested nodes. For example, if an ant has been delayed a long time beauseit went through a highly ongested part of the network, it will update theorresponding routing-table entries with a warning. The use of Ant Algo-rithms in ommuniation networks or vehile routing and logistis problemsis now alled Ant Colony Routing { ACR .{ Combinatorial optimization problems suh as the Travelling Salesman Prob-lem [6℄, the Quadrati Assignment Problem [9℄ and Graph Colouring [3℄.The tehniques to solve these problems were inspired by food retrieval inants and are alled Ant Colony Optimization { ACO.{ In several problems involving robotis, on-line learning to ahieve robot o-ordination and transport [7℄, Adaptative Task Alloation [8℄.{ Data Clustering.In the next setion one of the most used Ant algorithm - the ACS - is de-sribed.4 The Ant Colony System AlgorithmThe ACS - Ant Colony System is a Swarm Intelligene algorithm proposed byDorigo and Gambardella [6℄ for ombinatorial optimization based on the ob-servation of ant olonies behavior. It has been applied to various ombinatorialoptimization problems like the symmetri and asymmetri traveling salesmanproblems (TSP and ATSP respetively), and the quadrati assignment problem[9℄. In the remaining of this setion the TSP is used to desribe the algorithm.The most important onept of the ACS is the �(r; s), alled pheromone,whih is positive real value assoiated to the edge (r; s). It is the ACS ounterpartof Q-learning Q-values, and indiates how useful it is to move to the ity swhen in ity r. �(r; s) values are updated at run time by the arti�ial ants. Thepheromone ats as a memory, allowing the ants to ooperate indiretly.Another important value is the heuristi �(r; s) assoiated to edge (r; s). Itrepresents an heuristi evaluation of whih moves are better. In the TSP �(r; s)is the inverse of the distane from r to s, Æ(r; s).



6 An agent k positioned in the ity r moves to ity s using the following rule,alled state transition rule:s = (arg maxu2Jk(r)�(r; u) � �(r; u)� if q � q0S otherwise (1)where:{ � is a parameter whih weigh the relative importane of the learned pheromoneand the heuristi distane values (� > 0).{ Jk(r) is the list of ities still to be visited by the ant k, where r is the urrentity. This list is used to onstrain agents to visit ities only one.{ q is a value hosen randomly with uniform probability in [0,1℄ and q0 (0 �q0 � 1) is a parameter that de�ned the exploitation/exploration rate: thehigher q0 the smaller the probability to make a random hoie.{ S is a random variable seleted aording to a probability distribution givenby: pk(r; s) =8>><>>: [�(r; u)℄ � [�(r; u)℄�Xu2Jk(r) [�(r; u)℄ � [�(r; u)℄� if s 2 Jk(r)0 otherwise (2)This transition rule is meant to favor transition using edges with a largeamount of pheromone and whih are short.In order to learn the pheromone values, the ants in ACS update the valuesof �(r; s) in two situations: the loal update step and the global update step.The ACS loal updating rule is applied at eah step of the onstrution ofthe solution, while the ants visit edges and hange theis pheromone levels usingthe following rule: �(r; s) (1� �) � �(r; s) + � ���(r; s) (3)where 0 < � < 1 is a parameter, the learning step.The term ��(r; s) an be de�ned in two di�erent ways:1. ��(r; s) =  �maxz2Jk(s) �(s; z)Using this equation the loal update rule beames similar to the Q-learningupdate, being omposed by a reinforement term and the disounted evalu-ation of the next state (with  as the disount fator). The only di�ereneis that the set of available ations in state s, (the set Jk(s)) is a funtion ofthe previous history of agent k. When the ACS uses this update it is alledAnt-Q.2. The other possibility to implement the loal update is to use ��(r; s) = �0,where �0 is the initial pheromone level. The authors states that both ��(r; s)resulted in similar performane.



7One the ants have ompleted the tour, the pheromone level � is updated bythe following global update rule:�(r; s) (1� �)�(r; s) + � ���(r; s) (4)where � is the pheromone deay parameter (similar to the disount fator inQ-Learning) and ��(r; s) is a delayed reinforement, usually the inverse of thelenght of the best tour. The delayed reinforement is given only to the tour doneby the best agent { only the edges belonging to the best tour will reeive morepheromones (reinforement).The pheromone updating formulas intends to plae a greater amount of fer-omone on the shortest tours, ahieving this by simulating the adition of newpheromone deposited by ants and evaporation.In short, the system works as follows: after the ants are positioned in theities, eah ant builds a tour. During the onstrution of the tour, the loalupdating rule is applied modifying the pheromone level of the edges. When theants have �nished their tours, the global updating rule is applyed, modifyingagain the pheromone levels. This yle is repeated until no improovement isobtained or a �xed number of iterations were reahed. The ACS algorithm ispresented below. Finally, the Dorigo and Di Caro proposed a more abstrationversion of this algorithm (without implementation details), alled the Ant ColonyOptimization { ACO { Meta Heuristi, whih outlines the working model of anysystem that \uses a olony of arti�ial ants to ooperate in �nding good solutionsto di�ult disrete optimization problems"[5℄.The ACS algorithmInitialize the pheromone table, the ants and the list of ities.Loop /* an iteration */Position eah ant in the starting node.Loop /* a step */Chose next state using equation (1).Update list of visited ities Jk.Apply loal update to pheromones using equation (3).Until (ants have a omplete tour).Apply global pheromone update using equation (4).Until (Final Condition is reahed).Common riti related to this work is that the ACS algorithm is not an MDP.In this way, it annot be prooved that the system onverges to the optimal poliy.5 The Proposed AlgorithmTo be able to to ope with a ombinatorial optimization problem where inter-leaved exeution is needed, the ACS algorithm was modi�ed by the introdutionof several pheromone tables, one for eah operation that the system an perform,and of several Jk lists, that are used to reord ompleted tasks.



8 This modi�ation allows the use of a priori domain knowledge to deomposethe assembly problem in subtasks, expliitando as aoes e estados.This modi�ation is possible beause the a priori domain knowledge inludes:how to deompose the problem in subtasks; the relation between operation andstates; and the relation between any two operations, inluding the order in whihthey an be performed. In the assembly domain the operations and relationsamong them are:{ Pik-Up: to pik up a tenon. After this operation only the Put-Down oper-ation an be used.{ Put-Down: to put down a tenon over a mortise. In the domain, the manip-ulator never puts down a piee in a plae that is not a free mortise. Afterthis operation both Pik-Up and Clean an be used.{ Clean: to lean a ertain position, removing unwanted material to the trashan and staying over it. After this operation both Pik-Up and Clean anbe used.The use of knowledge about the relations between operations and statesredues the learning time beause it makes expliit whih part of the searhspae must be analised before making a transition: instead of searhing onetable with all the possibilities, the modi�ed algorithm searh only the tables ofthe operations whih are possible to be performed from the present state.The modi�ed algorithm is the similar to the presented in the last setion,with the following hanges:{ Initialization takes are of several pheromone tables, the ants and the listsof ompleted tasks.{ Instead of diretly hoosing the next state using the state transition rule(equation 1), the next state is hoosen among the possible operations. Thisis done using a preondition hek list that is not on the table. If there areseveral possible operations, then equation (1) is used.{ The loal update is applied to pheromone table of the exeuted operation.{ Instead of updating the list of visited ities Jk, the list orresponding to theexeuted operation is updated.For example, in an assembly task where one manipulator is used to pik andplae piees, there are 2 tables, one for piking up tenons and another for plaingthem over the mortises. There are also two lists, one for tenons remaining to bepiked and another to free positions. In this ase the two operations are mutuallyexludent, so the system works one step piking up and the next step plaingthe tenon.A more omplex system is one with assembly and leaning tasks. In thisase, at the start the system an hoose between 2 operations: pik up a tenonor remove an unwanted objet. Whih one will be done depends on the result ofthe state transition rule (equation 1).The next setion presents these examples in detail and also the results of theimplemented system.



96 Experimental Desription andResultsThe approah was tested in a simulated domain, a disrete workspae whereeah ell in this grid an have one piee, one tenon or piees with trash on it.Experiments were performed onsidering di�erent numbers of workspae ells,learning suessfully an optimal ation poliy in eah experiment under the as-sembly task domain. In order to illustrate the results we present three examples.In all of them, the goal to �nd sequene in whih the assembly ations mustbe performed in order to minimize exeution the distane the manipulator griptravels to make the assembly (whih is the same as the time to perform the as-sembly). One iteration �nishes when there is no more piee left to be assembled,and the system stops when the result does not improove for a ertain number ofiterations or reahes a maximum number of iterations.
= Tenons= Mortises = Tenons= Mortises = Trash= Tenons= Mortises

TrashCan

(a) (b) ()Fig. 2. Con�guration of example 1 to 3 (from left to right).In the �rst example (�gure 2-a) there are initially 4 piees and 4 tenons onthe border of a square with side 9. As there is no thrash, the operations thatan be performed are to pik up a tenon or put it down over a mortise.The result (�gure 3-a) shows that the modi�ed ACS algorithm took less than6 iterations to onverge to the optimal solution, whih is 36 (the total distanebetween piees and tenons). The same problem took 332 steps to ahieve thesame result using the Q-learning algorithm. This shows that the ombination ofboth reinforement and heuristis yelds good results.The seond example (�gure 2-b) is similar to the �rst, but now there are 8tenons and 8 mortises spread in a random disposition on the grid. Rhe result(�gure 3-b) of the Modi�ed ACS is also the best one, ompared with Q-learning.Finally, example 3 (�gure 2-) presents a on�guration where the system mustlean some grids before performing the assembly. The tenons and mortises areon the same position as example 1, but there are trashes that must be removedover the tenon in the position (line = 1, olunm = 10) and over the mortise(6, 1). The operations are pik up, put down and lean. this last one moves themanipulator over the position to be leaned, piks the undesired objet and puts
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(a) (b) ()Fig. 3. Result of the Modi�ed ACS for examples 1 to 3 (from left to right).it on the thrashan, loated at position (1, 11). Again, we an see in the result(�gure 3-) that the modi�ed ACS is the best result.In the 3 examples above the parameters used were the same: the loal up-date rule used was the Ant-Q rule; the exploitation/exploration rate is 0.9; thelearning step � is set at 0.1; the disount fator � is 0.3; the maximum number ofiterations allowed was set to 1000 and the results were build during 15 epohs.The system was implemented on a AMD K6-II-500MHz, with 256 MB RAMmemory, using Linux and GNU g. The time to run eah iteration is less than0.5 seonds for examples 1 and 3. Inreasing the number of tenons require aninreasing iteration time in the learning algorithms.7 Conlusion and Future WorksThe implementation of the ViBRA arhiteture with the Modi�ed ACS Algo-rithm led to a system where agents exists at two levels: on a higher level are theautonomous agents of the ViBRA Arhiteture (assembler, leaner and ollisionavoider) and on a lower level, the agents based on the ACS ants, whih are usedto optimize the work of the higher level agents.From the experiments arried out we onlude that the ombination of RL,Heuristi Searh and the use of expliit domain information about states andations to minimize the searh spae used in the proposed algorithm presentsbetter results than any of the tehniques alone.The results obtained showed that the system was able to minimize the taskexeution time in several on�gurations, also minimizing the learning times whenompared to other RL tehniques.Future works inludes the implementation of this arhiteture in a FlexibleAssembly Cell with a roboti manipulator and the extension of the system toontrol teams of mobile robots performing foraging tasks.
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