

4. RESULTADOS EXPERIMENTAIS

4.1. Caracterização microestrutural

4.1.1. Microscopia óptica

Após a preparação metalográfica das amostras, foi realizado o ataque Behara modificado (conforme item 3.3), para a revelação de suas microestruturas. Foram identificadas por microscopia óptica as fases ferrita e austenita em ambos os materiais conforme mostrado nas micrografias 4.1 e 4.2

Micrografia 4.1. Amostra do aço SAF 2205 solubilizada. Ferrita (escura) e austenita (clara). Ataque: Behara modificado.

Micrografia 4.2. Amostra do aço SAF 2507 solubilizada. Ferrita (escura) e austenita (clara). Ataque: Behara modificado.

4.1.2. Fração volumétrica de ferrita e austenita

Após a calibração do ferritoscópio, foram realizadas 180 medições em regiões aleatórias das amostras (duração de aproximadamente 3 minutos em cada amostra), conferindo os resultados mostrados na Tabela 3.

Material	% а	%γ*
SAF 2205	54,8 ±2,8	45,2 ±2,8
SAF 2507	52,5 ±2,2	47,5 ±2,2

Tabela 3 – Fração volumétrica de ferrita e austenita obtidas através do ferritoscópio.

* Calculada segundo a Equação 1

Foi realizada a estereologia quantitativa das amostras após ataque com Behara (duração de aproximadamente 20 minutos em cada amostra), para obtenção de fração

volumétrica de ferrita e austenita, tendo então dados para comparação com os dados obtidos pelo ferritoscópio, mostrados na Tabela 4.

Tabela 4 – Fração volumétrica de ferrita e austenita obtida	através de
estereologia quantitativa.	

Material	% a	% γ
SAF 2205	52,1 ±2,4	47,9 ±2,4
SAF 2507	50,7 ±1,8	49,3 ±1,8

4.1.3. Microdureza

Após polimento das amostras foram realizadas 40 medições de dureza em regiões aleatórias (duração de aproximadamente 20 minutos em cada amostra), conferindo os resultados mostrados na Tabela 5.

Tabela 5 - Microdureza das ligas em estudo.

Material	Média	Desvio
SAF 2205	258 HV	± 20
SAF 2507	294 HV	± 34

4.1.4. Ensaios de tração

Após o polimento manual na região do pescoço os cinco corpos-de-prova de tração de cada liga foram tracionados; cada ensaio durou aproximadamente 25 minutos, conferindo os resultados mostrados na Tabela 6.

Material	Limite de Escoamento (Mpa)	Limite de Resistência (Mpa)	Limite de Ruptura (Mpa)	Alongamento Total em 25 mm (%)
SAF 2205	520	767	389	58,54
SAF 2507	603	862	489	55,58

Tabela 6 – Resultados do ensaio de tração

4.2. Ensaios de polarização cíclica

O pH das soluções que foram utilizadas tanto na última etapa de polimento, quanto nos ensaios de polarização cíclica, conferiram os valores mostrados na Tabela 7.

Tabela 7 – pH das soluções utilizadas no polimento e polarização cíclica

Solução	pH encontrado
Sílica Coloidal (OP-S)	9,3
NaCl - cloreto de sódio	5,5
NaBr - cloreto de sódio e brometo de sódio	5,6

Antes da realização dos ensaios de polarização cíclica foram realizadas as Micrografias 4.3 e 4.4, para identificar por microscopia óptica a diferença de planos entre as fases austenita e ferrita (austenita no plano superior, com a verificação nítida das maclas existentes nesta fase, e consequentemente a ferrita no plano inferior), que é dada em razão do último polimento ser realizado tendo a sílica coloidal (OP-S) como abrasivo. Foi utilizado para este tipo de observação contraste de fase por interferência, com luz polarizada e prisma do tipo Nomarski no microscópio Leica DMLM.

Micrografia 4.3. Superficie da amostra do aço SAF 2205 solubilizada, após o polimento com abrasivo sílica coloidal (OP-S).

Micrografia 4.4. Superficie da amostra do aço SAF 2507 solubilizada, após o polimento com abrasivo sílica coloidal (OP-S).

4.2.1. Ensaios de polarização cíclica em superfície lixada

Os ensaios de polarização cíclica dos aços SAF 2205 e SAF 2507 com superfícies lixadas até granulometria #600 em ambas as soluções, geraram as curvas de potencial por densidade de corrente mostradas nas Figuras 28 a 31.

Figura 28: Curva de polarização cíclica da amostra com superfície lixada do aço SAF 2205 solubilizado, em solução 3,5% NaCl. As setas indicam o sentido da polarização.

Figura 29: Curva de polarização cíclica da amostra com superfície lixada do aço SAF 2507 solubilizado, em solução 3,5% NaCl. As setas indicam o sentido da polarização.

Figura 30: Curva de polarização cíclica da amostra com superfície lixada do aço SAF 2205 solubilizado, em solução 0,3M NaCl + 0,3M NaBr. As setas indicam o sentido da polarização.

Figura 31: Curva de polarização cíclica da amostra com superfície lixada do aço SAF 2507 solubilizado, em solução 0,3M NaCl + 0,3M NaBr. As setas indicam o sentido da polarização.

4.2.2. Ensaios de polarização cíclica em solução 3,5% NaCl com Δi^{rev}=10⁻³ A/cm²

Os ensaios de polarização cíclica com $\Delta i^{rev} = 10^{-3} \text{ A/cm}^2$ nesta solução geraram as curvas de potencial por densidade de corrente mostradas nas Figuras 32 e 33. Para o aço SAF 2205 (Figura 32) notam-se elevados valores de potencial de pite e proteção, e pequeno trabalho para a repassivação dos pites formados, sugerindo grande resistência a este tipo de corrosão. Para o aço SAF 2507 (Figura 33), notam-se resultados semelhantes ao do aço 2205: isto mostra que a solução 3,5% NaCl não diferencia os dois aços quanto a resistência à corrosão.

Nas Tabelas 8 e 9 encontram-se resumidos para estes aços os valores de potenciais de corrosão, pite e proteção, assim como o trabalho de repassivação dos pites (U), a resistência a polarização (Rp), a densidade de corrente no potencial de corrosão (Icorr(R)), e seus respectivos desvios padrão.

Figura 32: Curva de polarização cíclica da amostra de SAF 2205 solubilizada em solução 3,5% NaCl. As setas indicam o sentido da polarização.

Tubelu o Ttebulluuob uob elibulob ue poluti Euquo eleficu ilo ugo bitt uuo	Tabela 8 – Resultado	os dos ensaios	s de polarização	cíclica no aço	SAF 2205
--	----------------------	----------------	------------------	----------------	-----------------

Motorial	E* (I=0)	E pite	E prot1	E prot2	U	Rp	Icorr (R)
Material	mV	mV	mV	mV	mC	K Ohms	nA
2205	-169 ±111	1142 ±27	1023 ±49	475 ±166	145,4 ±29	396 ±305	110 ± 102

Figura 33: Curva de polarização cíclica da amostra de SAF 2507 solubilizada em solulção 3,5% NaCl. As setas indicam o sentido da polarização.

Tabela 9 – Resultados dos ensaios de polarização cíclica no aço SAF 2507

Motorial	E* (I=0)	E pite	E prot1	E prot2	U	Rp	Icorr (R)
Material	mV	mV	mV	mV	mC	K Ohms	nA
2507	-241 ±36	1140 ± 24	1004 ± 31	352 ± 252	168 ±19	478 ± 304	64 ±45,5

A superfície dos corpos-de-prova após os ensaios de polarização cíclica foram analisadas por microscopia óptica e eletrônica de varredura com elétrons secundários e/ou retroespalhdados, para avaliar a extensão dos danos causados pela corrosão por pite. Os resultados destas análises podem ser observados nas Micrografias 4.5 a 4.9.

É interessante observar que ocorre ataque a microestrutura de todas as amostras, sendo nítido o ataque seletivo à ferrita, mostrado na Micrografia 4.9 e confirmado

posteriormente através da análise por EDS, como mostra a Figura 34. Outra característica são os pites rasos e espalhados por toda a amostra.

Micrografia 4.5. Imagem de elétrons secundários que caracterizam a corrosão por pite no aço SAF 2205 em solução 3,5% M NaCl com $\Delta i^{rev} = 10^{-3} \text{ A/cm}^2$

Micrografia 4.6. Imagem de elétrons secundários que caracterizam a corrosão por pite no aço SAF 2205 em solução 3,5% M NaCl com $\Delta i^{rev} = 10^{-3} \text{ A/cm}^2$

Micrografia 4.7. Superfície da amostra do aço SAF 2205 após polarização cíclica em 3,5% NaCl com Δ irev = 10^{-3} A/cm².

Micrografia 4.8. Superfície da amostra do aço SAF 2205 após polarização cíclica em 3,5% NaCl com Δ irev = 10⁻³ A/cm². A região mesclada ao redor do pite é resultado da formação de regiões anódica e catódica.

Micrografia 4.9. Imagem de elétrons secundários caracterizando o inicio da corrosão por pite como corrosão seletiva da ferrita no SAF 2205, após polarização cíclica em 3,5% NaCl com Δ irev = 10^{-3} A/cm².

Figura 34: Análise química das fases por EDS confirmando o inicio da corrosão por pite como corrosão seletiva da ferrita no SAF 2205. (a) Ferrita. (b) Austenita.

4.2.3. Ensaios de polarização cíclica em solução 3,5% NaCl com Δi^{rev}=10⁻¹ A/cm²

Os ensaios de polarização cíclica com $\Delta i^{rev} = 10^{-1} \text{ A/cm}^2$ nesta solução geraram as curvas de potencial por densidade de corrente mostradas nas Figuras 35 e 36. Nas Tabelas 10 e 11 encontram-se resumidos os valores de potenciais de corrosão, pite e proteção, assim como o trabalho de repassivação dos pites (U), a resistência a polarização (Rp), a densidade de corrente no potencial de corrosão (Icorr(R)), e seus respectivos desvios-padrão.

Nas micrografias 4.10 a 4.14 nota-se o ataque mais intenso destas amostras, pois com a reversão do sentido de varredura de potencial quando a densidade de corrente anódica atingiu 10^{-1} A/cm², permitiu-se o progresso da corrosão localizada (ou do crescimento dos pites).

Figura 35: Curva de polarização cíclica da amostra de SAF 2205 solubilizada em solução 3,5% NaCl. As setas indicam o sentido da polarização.

Matarial	E* (I=0)	E pite	E prot1	E prot2	U	Rp	Icorr (R)
Material	mV	mV	mV	mV	mC	K Ohms	nA
2205	-127 ±2,8	1150 ± 14	1310 ±410	695 ±18	2639 ±112	754 ±104	29 ±4

Figura 36: Curva de polarização cíclica da amostra de SAF 2507 solubilizada em solução 3,5% NaCl. As setas indicam o sentido da polarização.

Fabela 11 – Resultados dos ensaios	de polarização	cíclica no aço SAF 2507
------------------------------------	----------------	-------------------------

Material	E* (I=0)	E pite	E prot1	E prot2	U	Rp	Icorr (R)
	mV	mV	mV	mV	mC	K Ohms	nA
2507	-219,5 ±33	1150 ± 14	987 ±18	591 ±177	2271 ±590	601 ±112	37 ±7

Micrografia 4.10. Imagem de elétrons secundários que caracterizam a corrosão por pite no aço SAF 2205 em solução 3,5% NaCl com $\Delta i^{rev} = 10^{-1} \text{ A/cm}^2$

Micrografia 4.11. Imagem de elétrons secundários que caracterizam a corrosão por pite no aço SAF 2205 em solução 3,5% NaCl com $\Delta i^{rev} = 10^{-1} \text{ A/cm}^2$

Micrografia 4.12. Imagem de elétrons secundários que caracterizam a corrosão por pite no aço SAF 2205 em solução 3,5% NaCl com $\Delta i^{rev} = 10^{-1} \text{ A/cm}^2$. A corosão seletiva é visualizada.

Micrografia 4.13. Imagem de elétrons secundários que caracterizam a corrosão por pite no aço SAF 2205 em solução 3,5% NaCl com $\Delta i^{rev} = 10^{-1}$ A/cm².

Micrografia 4.14. Imagem de elétrons secundários que caracterizam a corrosão por pite no aço SAF 2205 em solução 3,5% NaCl com $\Delta i^{rev} = 10^{-1} \text{ A/cm}^2$.