APPLICATIONS OF X-RAY DIFFRACTOMETRY ON PHASE QUANTIFICATION IN STAINLESS STEELS

F. R. Pucci, T. A. Lopes, J. W. Calderon-Hernandez, <u>RODRIGO MAGNABOSCO</u>

Introduction

Introduction

J. TALONEN, H. HÄNNINEN, Damping Properties of Austenitic Stainless Steels Containig Strain-Induced Martensite, Mettalurgical and Materials Transactions A, v. 35A, ago. 2004, p. 2401.

J.W. FEREZIN, R. MAGNABOSCO, Study of strain induced martensitic transformation in two austenitic stainless steels by x-ray diffraction. 9th ESSC and 5th European DSS Conference proceedings. 2017. p. 1-7 **Objectives**

This work evaluates XRD as a technique for phases quantification, compared to ferritscope magnetic measurements. ferrite martensite in DSS $(\gamma_{retained/reversed})$ in SMSS

Steel UNS	Cr	Ni	Mo	Ν	С	Mn	Si	other	Fe
DSS	22.5	5.7	3.2	0.16	0.02	1.4	0.35	0.15 Cu	Delenee
SMSS	13.4	5.1	1.1	0.17	0.01	0.63	0.39	0.11 Nb	Balance

> DSS

> 3 mm sheets, solution-treated 30 min @ 1070, 1130 or 1180 °C, water quenched

> SMSS

- ➢ 10 mm sided square bars, austenitized @ 1050 °C, oil quenched
- ➤ tempered 2 h @ 550, 575, 600, 625, 650 or 700 °C
- Samples were metallographic polished prior to XRD measurements
- > Ferritscope: 10 to 30 measurements in each sample

X-ray source	Cu Ka1	Cr Kal			
wavelength (λ , nm)	0.15406	0.22897			
scanning angle range	$40^{\circ} < 2\theta < 100^{\circ}$ for DSS $40^{\circ} < 2\theta < 85^{\circ}$ for SMSS	$60^\circ < 2\theta < 160^\circ$			
step	0.02 °				
scanning rate	0.5 °/min				
X-ray power	0.9 kW				
scannings per sample	10				

Corrected value: a = 3.589 Å

SMSS: austenite was only detected at 625 or 650 °C

DSS: both phases are detected

SMSS:

- retained (or reversed) austenite was detected in ferritscope at all T.
- small thickness of interlath austenite (specially retained at lower T)
- higher amounts of reversed
 austenite (700 °C) lead to
 more martensite formation
 after tempering
- Cr better than Cu

Conclusions

Ferritscope analysis of SMSS showed that retained and/or reversed austenite is present in all tempering conditions. However, XRD quantification were only able to detect and quantify austenite in samples where the morphology of austenite lead to a higher volume, enhancing austenite peaks intensity.

Conclusions

For the SMSS, the better separation between $\gamma(111)$ and $\alpha(110)$ peaks when Cr K α 1 radiation was used lead to a better quantification of the reversed austenite formed at 625 °C and 650 °C tempered samples. However, detection of thinner laths of retained austenite was not possible even using Cr K α 1 radiation.

Conclusions

For the DSS, quantification of phases by XRD was only possible using Cu Kα1 radiation, and the samples cannot present preferential orientation of phases.

Acknowledgements

APPLICATIONS OF X-RAY DIFFRACTOMETRY ON PHASE QUANTIFICATION IN STAINLESS STEELS

RODRIGO MAGNABOSCO rodrmagn@fei.edu.br

