RODRIGO CÉSAR NASCIMENTO LIBERTO

CORROSÃO-EROSÃO DA LIGA Cu10Ni-3Al-1,3Fe EM PRESENÇA DE ÍONS CLORETO, SULFETO E SULFATO

São Paulo 2010 RODRIGO CÉSAR NASCIMENTO LIBERTO

CORROSÃO-EROSÃO DA LIGA Cu10Ni-3AI-1,3Fe EM PRESENÇA DE ÍONS CLORETO, SULFETO E SULFATO

Tese apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Doutor em Engenharia

Área de Concentração: Engenharia Metalúrgica e de Materiais

Orientadora: Prof. Dra. Neusa Alonso-Falleiros Este exemplar foi revisado e alterado em relação à versão original, sob responsabilidade única do autor e com anuência de seu orientador.

São Paulo, 15 de abril de 2010.

Assinatura do autor

Assinatura do orientador

FICHA CATALOGRÁFICA

Liberto, Rodrigo César Nascimento Corrosão-erosão da liga Cu10Ni-3Al-1,3Fe em presença de íons cloreto, sulfeto e sulfato / R.C.N. Liberto. – Ed Revisada --São Paulo, 2010. 215 p.

Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Metalúrgica e de Materiais.

1. Ligas de cobre 2. Corrosão 3. Endurecimento por precipitação I. Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia Metalúrgica e de Materiais II. t.

Aos meus pais, Rui César Liberto e Maria Aparecida Nascimento Liberto.

AGRADECIMENTOS

Aos meus pais, Rui e Maria, e aos meus irmãos, Raphael e Renato, pelo apoio incondicional.

À Prof. Dra. Neusa Alonso-Falleiros, pela orientação segura, apoio, incentivo, confiança e por acreditar no meu trabalho.

À FAPESP, pelo auxílio pesquisa (projeto 04/13072-0) concedido para realização deste trabalho.

Ao CNPq, pelo auxílio pesquisa (projeto 478907/2004-4) concedido para realização deste trabalho.

À FEI (Centro de Desenvolvimento de Materiais Metálicos do Centro Universitário da FEI - CDMatM-FEI), pelo apoio durante a pesquisa, na elaboração das ligas e nos ensaios mecânicos.

Ao Laboratório de Microscopia Eletrônica e de Força Atômica do Departamento de Engenharia Metalúrgica e de Materiais da EPUSP (LabMicro/PMT), pelas análises de microscopia eletrônica de varredura e EDS.

Ao Prof. Dr. Rodrigo Magnabosco, pelo incentivo, apoio, encorajamento e por sempre acreditar no meu trabalho.

Aos funcionários da biblioteca do PMT/USP, Clélia e Gilberto pela constante atenção.

Ao Prof. Dr. Edvaldo Ângelo, pelo apoio e pelas simulações numéricas utilizadas para determinar as velocidades de impacto da partícula durante os ensaios de corrosão-erosão.

À amiga e colega Clarice Terui Kunioshi, pelo apoio, incentivo e pela inestimável ajuda com os procedimentos de MEV.

E a todos que direta ou indiretamente me auxiliaram neste trabalho.

RESUMO

O presente trabalho teve como objetivos determinar a resistência à corrosão e as propriedades mecânicas da liga Cu10Ni-3Al-1,3Fe, nas condições solubilizada e envelhecida a 550°C. Foi também objetivo do trabalho identificar a microestrutura nestas condições de tratamento térmico. As propriedades mecânicas foram avaliadas a partir de ensaios de tração e medidas de microdureza. Para caracterizar a resistência à corrosão e corrosão-erosão, foram realizados ensaios de polarização potenciodinâmica na condição estagnada e associada à erosão em 0,01M NaCl, 0,01M Na₂SO₄ e 0,0001M Na₂S.9H₂O.

Para tanto, foi necessário elaborar a liga Cu10Ni-3Al-1,3Fe, por fundição em forno do tipo mufla. O lingote obtido foi solubilizado a 900°C e laminado a frio. Posteriormente a chapa obtida foi novamente tratada a 900°C por 1 h para garantir uma microestrutura homogênea de fase α. A partir desta chapa foram retiradas amostras para os tratamentos térmicos de envelhecimento por até 1.032 h a 550°C. Os exames metalográficos mostraram intensa precipitação nas condições envelhecidas.

Através dos ensaios de tração e medidas de microdureza, verificou-se que a presença dos precipitados melhora significativamente as propriedades mecânicas, sendo que os valores máximos de dureza, limite de escoamento e de resistência ocorrem para o tempo de 16 h de envelhecimento. Este efeito é decorrente de duas parcelas, uma dos precipitados intergranulares que se formam num processo de precipitação celular e a outra das partículas finamente dispersas (precipitados intragranulares).

Em relação a resistência à corrosão, constatou-se que a liga, em todas as condições de tratamento térmico, apresenta um potencial de quebra (Eq) quando polarizada em eletrólitos que contém cloreto, sulfato ou sulfeto. Em 0,01M NaCl, o potencial Eq está relacionado com o processo de corrosão seletiva do níquel (desniquelação). Observou-se ainda que o envelhecimento provocou um aumento nos valores de Eq,

sendo mais evidente para as amostras envelhecidas por 2 e 1.032 h. Nos ensaios de corrosão-erosão (realizados apenas nas condições solubilizada e envelhecida por 16 h), também ocorre o potencial Eq, mas os valores são mais baixos. Nestes casos foram observadas cavidades, que não estão relacionadas com o processo de corrosão seletiva, mas sim com o processo de erosão. Nos eletrólitos de 0,01M Na₂SO₄ e 0,0001M Na₂S.9H₂O o potencial Eq está relacionado com a formação de cavidades (pites), e não com o processo de corrosão seletiva. Nestes eletrólitos, não foi observada qualquer dependência entre Eq e o envelhecimento da liga, diferentemente do verificado em 0,01M NaCl, onde o envelhecimento proporcionou um efeito benéfico. Igualmente, não houve diferenças significativas nos valores de Eq quando o material foi submetido à corrosão-erosão.

Palavras-chaves: ligas cuproníquel, corrosão, corrosão-erosão.

ABSTRACT

The present work evaluated the corrosion resistance and mechanical properties of Cu10Ni-3Al-1.3Fe cupronickel alloy, in the solution-treated and 550°C aged conditions. It was also objective of the work to identify the microstructural changes in these conditions of aging treatment. Mechanical properties were evaluated through microhardness and tension tests; to evaluate the corrosion and corrosion-erosion resistance, potenciodynamic polarization tests were done in the stagnated condition and polarization associated to erosion in 0.01M NaCl, 0.01M Na₂SO₄ or 0.0001M Na₂S.9H₂O.

The alloy had been casting and solution treated at 900°C, and after that cold rolled. From cold rolled sheet, specimens were solution treated at 900°C for 1 h, and aged at 550°C until 1,032 hours. The microstructural exams showed precipitation in the aged samples.

The microhardness and tension tests showed that the presence of precipitates improve the mechanical properties, and the maximum value of hardness was obtained after 16 h of aging at 550°C. This effect is related to two microstructural aspects, one regarding intergranular precipitates that were formed by cellular precipitation and other related to the presence of finely dispersed intragranular precipitation.

Concerning corrosion resistance, it was verified that the alloy, in all conditions, presented a break potential (Eq) when polarized in the tested solutions. In 0.01M NaCl, Eq is related with the process of selective corrosion of the nickel (denickelification). It was observed although that aging increased the values of Eq, being more evident for the aged samples for 2 and 1,032 h. The corrosion-erosion tests (just accomplished in the conditions solution-treated and aged by 16 h), also presented Eq, but the values were lower. In these cases cavities were observed, however not related to the process of selective corrosion, but to the erosion process. The tests in 0.01M Na₂SO₄ or 0.0001M Na₂S.9H₂O showed that Eq is related with

the formation of cavities (pits), and not with the process of selective corrosion. In these solutions was not observed dependence between Eq and the aging time, differently of the verified in 0.01M NaCl, where the aging provided a beneficial effect. There were not significant differences in the values of Eq when the material was submitted to the corrosion-erosion in the solutions (0.01M Na₂SO₄ and 0.0001M Na₂S.9H₂O).

Key-words: cupronickel alloys, corrosion, corrosion-erosion.

LISTA DE FIGURAS

Figura 1.1:	Resistência à corrosão das ligas cobre-níquel-ferro	5
Figura 1.2:	Corrosão intergranular da liga de Cu-Ni-Fe que apresenta ferro	
	precipitado no contorno de grão	6
Figura 1.3:	Limite de solubilidade do ferro na liga cuproníquel 90-10	6
Figura 1.4:	Perda de massa após 30 dias em água do mar filtrada, com	
	velocidade de 6,7m/s. A linha tracejada indica a perda de massa da	
	liga Cu-10Ni sem adições	7
Figura 3.1.1:	Diagrama de fases do sistema cobre-níquel	11
Figura 3.1.2:	Diagrama de fases ternário do sistema cobre-níquel-alumínio	12
Figura 3.1.3:	Diagrama de fases ternário do sistema cobre-níquel-ferro (isoterma	
	400°C). A fase γ neste diagrama representa a fase α do digrama do	
	sistema Cu-Ni-Al	13
Figura 3.1.4:	Tempo para a formação de 100% dos precipitados de uma liga	
	supersaturada	17
Figura 3.1.5:	Variação da dureza durante o tratamento de envelhecimento	18
Figura 3.1.6:	llustração esquemática mostrando os passos da sequência do	
	processo do desenvolvimento da precipitação celular	21
Figura 3.1.7:	Mecanismo para a iniciação da precipitação descontínua a partir de	
	um contorno de grão inicialmente ocupado	21
Figura 3.1.8:	Mecanismo para a iniciação da precipitação descontinua a partir de	
	um contorno de grão inicialmente não ocupado	22
Figura 3.2.1:	Taxa de corrosão (mg/dm²/dia) de ligas cuproníquel em solução 3%	
	NaCl à 80ºC (exposta por 48 horas)	23
Figura 3.2.2:	Diagramas de equilíbrio potencial-pH para o sistema ternário Cu-	
	Cl-H ₂ O, 25ºC. Na construção destes diagramas não foram	
	considerados alguns derivados do cloro como: HCIO, CIO ⁻ ,	
	$HCIO_2, CIO_2^-, CIO_3^-, CIO_4^-$, assim como CI_2 gasoso e dissolvido	25

Figura 3.2.3:	Esquema do desenvolvimento dos tipos de produtos de corrosão do	
	cobre em água do mar	25
Figura 3.2.4:	Diagrama de potencial-pH do cobre em água do mar contendo	
	sulfeto	26
Figura 3.3.1:	llustração esquemática dos tipos de ataque por corrosão seletiva	28
Figura 3.3.2:	llustração do comportamento das ligas que sofrem processo de	
	corrosão seletiva. O valor crítico do potencial é mostrado através de	
	Eq	30
Figura 3.3.3:	Curvas de polarização anódica e o potencial crítico de dissolução	
	(Eq) do Cu na liga Cu-Au em solução de 0,1M Na ₂ SO ₄ /0,01M	
	H ₂ SO ₄	30
Figura 3.3.4:	Curvas esquemáticas para a liga AB, para os elementos A e B, e	
	para a reação do oxigênio	31
Figura 3.3.5:	Desenho esquemático mostrando a formação de lacunas na	
	superfície da liga AB, durante a corrosão seletiva pelo mecanismo	
	de difusão em volume	33
Figura 3.3.6:	Formação de uma superfície perfurada e de uma fina camada	
	cristalina na superfície de ligas homogêneas sob corrosão seletiva,	
	de acordo com o mecanismo de difusão em volume. (a) Estado	
	inicial, (b) e (c) estados intermediários, e (d) estado final da zona de	
	difusão e da espessura da camada rugosa	34
Figura 3.3.7:	Desenho esquemático da dissolução seletiva de uma liga binária	
	AB, conforme o mecanismo de dissolução-redeposição	36
Figura 3.3.8:	Relação entre o fator Z de ligas cuproníquel em água do mar. (1) 24	
	horas, (2) 66 horas, (3) 240 horas, (4) 360 horas e (5) 720 horas de	
	exposição	37
Figura 3.4.1:	Número de pites produzidos na superfície do cobre em várias	
	concentrações de NaCl	38
Figura 3.4.2:	Representação esquemática das camadas que revestem a	
	superfície corroída	39
Figura 3.4.3:	Esquema do mecanismo da membrana bipolar	41

Figura 3.5.1:	Processos resultantes da erosão causada por um único ou por	
	múltiplos impactos de partículas. (a) microcorte e/ou microsulco. (b)	
	quebra da superficie (<i>microcraking</i>). (c) extrusão do material que	
	saiu da cratera devido ao impacto. (d) trincamento que por fadiga	
	da superfície ou sub-superfície devido a impactos repetidos. (e)	
	formação de plaquetas finas devido à extrusão e ao forjamento	
	causado pelos impactos repetidos. (f) formação de plaquetas	
	devido à interação do processo de extrusão	44

- para o aço C60H.....
 51

 Figura 3.6.1:
 Corrosão-erosão em um tubo.....
 51

Figura 4.3.1:	(a) Corpo-de-prova de tração. (b) Dimensões do corpo-de-prova de	
	tração, em mm	57
Figura 4.3.2:	llustração para mostrar com foram retirados os corpos-de-prova	
	utilizados nos ensaios de corrosão e corrosão-erosão assistida por	
	polarização	58
Figura 4.4.1:	Politriz automática utilizada para os procedimentos de lixamento e	
	polimento dos corpos-de-prova utilizados para caracterização	
	microestrutural. Equipamento do CDMatM-FEI	59
Figura 4.4.2:	Distribuição dos pontos de microdureza realizados na secção	
	transversal das amostras	60
Figura 4.4.3:	Máquina universal de ensaios MTS utilizada para os ensaios de	
	tração. (equipamento do CDMatM-FEI)	61
Figura 4.4.4:	Aspecto do pHmetro de bancada DIGIMED, modelo DM-21	
	(equipamento do LPE/PMT)	61
Figura 4.4.5:	Vista do equipamento utilizado para a realização dos ensaios	
	eletroquímicos (LPE/PMT)	63
Figura 4.4.6:	Detalhes da célula eletroquímica e do arranjo experimental utilizado	
	no presente trabalho. (1) Eletrodo de calomelano saturado, (2)	
	capilar de Lüggin, (3) eletrodo de trabalho, (4) contra-eletrodo de	
	platina e (5) nível de eletrólito na célula	
	eletroquímica	63
Figura 4.4.7:	Vista do equipamento utilizado para a realização dos ensaios de	
	corrosão-erosão (LPE/PMT)	64
Figura 4.4.8:	Detalhes da célula de corrosão-erosão utilizada no presente	
	trabalho. (1) Eletrodo de trabalho, (2) capilar de Lüggin e eletrodo	
	de calomelano saturado, (3) contra-eletrodo de platina (4) disco de	
	agitação, (5) nível de eletrólito na célula eletroquímica	65
Figura 4.4.9:	Detalhes do corpo-de-prova utilizado nos ensaios de corrosão-	
	erosão assistida por polarização. (1) Haste, (2) bloco de cobre	
	(dimensões 10x10x10 mm), (3) eletrodo de trabalho	65

Figura 4.4.10:	Resultado das simulações realizadas no software CFX ANSYS [®] .	
	(a) Perfil de velocidades obtidas para rotação de 2500 rpm. (b)	
	Vórtice formado devido à agitação do fluído	66
Figura 4.4.11:	Detalhe do dispositivo da célula de corrosão-erosão utilizado para	
	posicionar o porta-amostra nos ângulos de ataque desejados. (a)	
	Detalhe do dispositivo na tampa da célula de corrosão-erosão, (b)	
	ilustração do dispositivo e (c) desenho de topo do porta-amostra	67
Figura 4.4.12:	Porta-amostra utilizado para os ensaios de corrosão-erosão e	
	dispositivo utilizado para manter o paralelismo entre a face da	
	amostra e o pino guia que posiciona a amostra no dispositivo	
	apresentado na Fig. 4.4.11	67
Figura 4.5.1:	Morfologia da alumina AL-R grão 80	69

- Figura 5.3.2:Imagens de elétrons secundários da condição envelhecida por15 min. Ataque com reativo Grade 7.....77

Figura 5.3.5:	Imagens de elétrons secundários da condição envelhecida por	
	16 h. Ataque com reativo Grade 7	80
Figura 5.3.6:	Imagens de elétrons secundários da condição envelhecida por	
	1.032 h. Ataque com reativo Grade 7	81
Figura 5.3.7:	Espectro de difração de raios-X da condição envelhecida por 1.032	
	h, onde são também indicados os ângulos de máxima intensidade	
	das fases α e Ni ₃ Al	82
Figura 5.3.8:	Espectro de difração de raios-X da condição envelhecida por 1.032	
	h, onde são apresentadas também três barras que indicam os	
	ângulos de máxima intensidade das fases AlNi, AlCu ₄ e Al ₂ Cu ₃ , de	
	onde se conclui que nenhuma destas três fases está presente na	
	amostra analisada	83
Figura 5.4.1:	Curva de polarização potenciodinâmica, em solução 0,01M NaCl.	
	As setas indicam o potencial de circuito aberto (E_{corr}) e o potencial	
	de quebra de passividade (Eq) da liga Cu10Ni-3Al-1,3Fe na	
	condição solubilizada. Início da polarização: 300 mV abaixo do	
	potencial de circuito aberto. Velocidade de varredura: 1 mV/s.	
	Polarização iniciada após 300 segundos de imersão	84
Figura 5.4.2:	Comparativo entre as curvas de polarização potenciodinâmica da	
	liga nas condições solubilizada e envelhecidas, em solução 0,01M	
	NaCl	85
Figura 5.4.3:	Efeito do tempo de envelhecimento sobre o potencial de quebra de	
	passividade da liga Cu10Ni-3Al-1,3Fe. Para comparação, é	
	apresentado o valor para a condição solubilizada	85
Figura 5.4.4:	Aspecto das superfícies das amostras após ensaio de polarização	
	potenciodinâmica, em solução 0,01M NaCl, com término ao ser	
	atingido o valor de densidade de corrente de 10 ⁻³ A/cm ² . Aumento:	
	50x. As setas indicam as regiões que em análises posteriores de	
	EDS mostraram os menores teores de níquel	87
Figura 5.4.5:	Imagens de elétrons secundários da liga na condição solubilizada,	
	a seta indica a mesma posição da Fig. 5.4.4	87

Figura 5.4.6:	Imagens de elétrons secundários da liga na condição envelhecida	
	por 2 h, a seta indica a mesma posição da Fig. 5.4.4	88

Figura 5.4.7:Imagens de elétrons secundários da liga na condição envelhecidapor 16 h, a seta indica a mesma posição da Fig. 5.4.4......88

- Figura 5.4.11: Imagens de elétrons secundários na região atacada das amostras apresentadas na Fig. 5.4.10. A seta amarela indica uma inclusão de grafita.....

- Figura 5.4.16: Aspecto da superfície da liga na condição solubilizada após ensaio de polarização potenciodinâmica, em solução 0,01M Na₂SO₄, com término ao ser atingido o valor de 10⁻² A/cm². Aumento: 50x.....
- Figura 5.4.17: Aspecto da superfície da liga na condição envelhecida por 2 h após ensaio de polarização potenciodinâmica, em solução 0,01M Na_2SO_4 , com término ao ser atingido o valor de 10^{-2} A/cm². Aumento: 50x..... 96
- Figura 5.4.18: Aspecto da superfície da liga na condição envelhecida por 16 h após ensaio de polarização potenciodinâmica, em solução 0,01M Na_2SO_4 , com término ao ser atingido o valor de 10^{-2} A/cm². Aumento: 50x.....
- Figura 5.4.19: Aspecto da superfície da liga na condição envelhecida por 1.032 h após ensaio de polarização potenciodinâmica, em solução 0,01M Na₂SO₄, com término ao ser atingido o valor de 10⁻² A/cm². Aumento: 50x..... 96
- Figura 5.4.20: geral das superfícies dos corpos-de-prova após Aspecto polarização potenciodinâmica, em solução 0,01M Na₂SO₄. As fotos apresentam toda a superfície dos corpos-de-prova.....
- Figura 5.4.21: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da liga na condição solubilizada, após polarização potenciodinâmica em solução 0,01M Na₂SO₄.....
- Figura 5.4.22: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da liga na condição envelhecida por 2 h, após polarização potenciodinâmica em solução 0,01M Na₂SO₄..... 98
- Figura 5.4.23: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da liga condição envelhecida por 16 h, após polarização na potenciodinâmica em solução 0,01M Na₂SO₄.....

95

96

97

Figura 5.4.24: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da liga na condição envelhecida por 1.032 h, após polarização potenciodinâmica em solução 0,01M Na₂SO₄.....

98

- **Figura 5.4.25:** Curva de polarização potenciodinâmica para condição solubilizada da liga Cu10Ni-3Al-1,3Fe, em solução 0,0001M Na₂S.9H₂O. Início da polarização no potencial de circuito aberto. Velocidade de varredura: 1 mV/s. Polarização iniciada após 300 segundos de imersão. As setas indicam o potencial de corrosão (E_{corr}) e o potencial de quebra de passividade (Eq).....

- **Figura 5.4.30:** Imagens de elétrons secundários para a condição solubilizada, após polarização potenciodinâmica em 0,0001M Na₂S.9H₂O...... 103
- Figura 5.4.32:Imagens de elétrons secundários para a condição envelhecida por16 h, após polarização potenciodinâmica em solução 0,0001MNa2S.9H2O......104

- Figura 5.4.33: Imagens de elétrons secundários para a condição envelhecida por 1.032 h, após polarização potenciodinâmica em solução 0,0001M Na₂S.9H₂O.....
- Figura 5.5.2: Aspecto das superfícies das condições solubilizada e envelhecida por 2h, 16 h e 1.032 h após ensaio de polarização potenciodinâmica, em solução 0,01M NaCl com agitação (2.500 rpm) e partículas (10% Al₂O₃), com término ao ser atingida a densidade de corrente de 10⁻³ A/cm². Ângulo: 15°. Aumento: 200x... 107

- Figura 5.5.16:Imagens de elétrons secundários para a condição envelhecida por2 h, após ensaio de polarização potenciodinâmica em solução0,0001M Na2S.9H2O com agitação e partícula.....115
- Figura 5.5.18:Imagens de elétrons secundários para a condição envelhecida por1.032 h, após ensaio de polarização potenciodinâmica em solução0,0001M Na2S.9H2O com agitação e partícula.....115
- Figura 6.1.2:Medidas de microdureza na matriz para a condição envelhecida por
15 min e 1 h, com carga de 9,8.10⁻² N (10 gf). Para comparação, é
apresentado o valor para a condição solubilizada......118

- Figura 6.2.4: Curvas de polarização potenciodinâmica em 0,01M NaCl da liga nas condições solubilizada e envelhecidas nos ensaios com agitação (2.500 rpm) e partículas (2,44% e 10% de Al₂O₃) com término ao ser atingido a densidade de corrente de 10⁻³ A/cm²...... 127

- Figura 6.3.4: Curvas de polarização potenciodinâmica em 0,01M Na₂SO₄ da liga nas condições solubilizada e envelhecidas nos ensaios com agitação (2.500 rpm) e partículas (2,44% e 10% de Al₂O₃), com término ao ser atingido a densidade de corrente de 10⁻³ A/cm²...... 136

- Figura 6.4.2: Comparativo entre as curvas de polarização da condição solubilizada da liga Cu10Ni-3Al-1,3Fe, realizadas em solução 0,01M NaCl, 0,01M Na₂SO₄ e 0,0001M Na₂S.9H₂O...... 140

- Figura 6.4.5: Curvas de polarização potenciodinâmica em 0,0001M Na₂S.9H₂O da liga nas condições solubilizada e envelhecidas nos ensaios com agitação (2.500 rpm) e partículas (2,44% e 10% de Al₂O₃), com término ao ser atingido a densidade de corrente de 10⁻³ A/cm²....... 145
- Figura 6.4.6: Aspecto das superfícies das condições solubilizada e envelhecida por 2, 16 e 1.032 h após ensaio de polarização potenciodinâmica, em solução 0,0001M Na₂S.9H₂O com agitação (2.500 rpm) e partículas (2,44% de Al₂O₃), com término ao ser atingido a densidade de corrente de 10⁻³ A/cm². Ângulo: 15°. Aumento: 200x... 146

Figura 6.4.10:	Imagens de elétrons secundários da região atacada, obtidas por	
	microscopia eletrônica de varredura, da superfície corroída da	
	condição envelhecida por 1.032 h, após ensaio de polarização	
	potenciodinâmica em solução 0,0001M Na ₂ S.9H ₂ O com agitação e	
	partícula (2,44% de Al ₂ O ₃)	147
Figura A.1:	Porta amostra utilizado para os ensaios de corrosão-erosão em	
	água destilada	161
Figura A.1.1:	Aspecto da superfície da condição solubilizada após ensaio de	
	corrosão-erosão em água destilada. Tempo de ensaio: 12 h. A seta	
	amarela indica fragmento de partícula aderido à superfície	162
Figura A.1.2:	Aspecto da superfície da condição envelhecida por 16 h após	
	ensaio de corrosão-erosão em água destilada. Tempo de ensaio:	
	12 h	162
Figura A.1.3:	Imagens da superfície ensaiada da condição solubilizada obtida	
	através de um microscópio de força atômica, após ensaio de	
	erosão em água destilada conduzido por 12 h	164
Figura A.1.4:	Imagens da superfície ensaiada da condição envelhecida por 16 h	
	obtida através de um microscópio de força atômica, após ensaio de	
	erosão em água destilada conduzido por 12 h	165
Figura A.1.5:	Imagens da superfície ensaiada da condição solubilizada obtida	
	através de um microscópio de força atômica, após ensaio de	
	erosão em água destilada conduzido por 1 h	167
Figura A.1.6:	Imagens da superfície ensaiada da condição envelhecida por 16 h	
	obtida através de um microscópio de força atômica, após ensaio de	
	erosão em água destilada conduzido por 1 h	167
Figura A.2.1:	Aspecto da superfície para a condição solubilizada após ensaio de	
	corrosão-erosão em solução 3,5% NaCl. Tempo de ensaio: 12 h. A	
	seta indica uma partícula aderida à superfície	168
Figura A.2.2:	Aspecto da superfície para a condição envelhecida por 16 h após	
	ensaio de corrosão-erosão em solução 3,5% NaCl. Tempo de	
	ensaio: 12 h	168

Figura A.3.1:	Variação de perda de massa das condições solubilizada e	
	envelhecida por 16 h em meio não corrosivo e em 3,5% NaCl. Os	
	ensaios foram conduzidos com 20% em peso de Al ₂ O ₃	171

LISTA DE TABELAS

Tabela 3.3.1:	Valores dos potenciais de eletrodo dos elementos da liga em	
	estudo a 25ºC	29
Tabela 3.6.1:	Espectro dos processos de corrosão-erosão	54
Tabela 4.1.1:	Composição química (% em massa) da liga em estudo (Instituto	
	de Pesquisas e Estudos Industriais – IPEI-FEI)	56
Tabela 4.4.1:	Valores de pH dos eletrólitos utilizados neste estudo	62
Tabela 5.2.1:	Propriedades mecânicas da liga nas condições solubilizada e	
	envelhecidas a 550°C. LE é o limite de escoamento, LR é o limite	
	de resistência, AT ²⁵ é o alongamento total em 25 mm	72
Tabela 5.2.2:	Coeficientes e expoentes da equação de Hollomon. H é o	
	coeficiente de resistência e n é o expoente de encruamento	73
Tabela 5.4.1:	Potenciais de circuito aberto (E _{corr}) e potenciais de quebra de	
	passividade (Eq) da liga Cu10Ni-3Al-1,3Fe, nas condições	
	solubilizada e envelhecida, em solução 0,01M NaCl	86
Tabela 5.4.2:	Resultados das análises por dispersão de energia das superfícies	
	atacadas indicadas nas Fig. 5.4.4 pelas setas, em solução 0,01M	
	NaCl, das condições solubilizada e envelhecidas	89
Tabela 5.4.3:	Potenciais de corrosão (E _{corr}) e potenciais de quebra de	
	passividade (Eq) da liga Cu10Ni-3Al-1,3Fe, nas condições	
	solubilizada e em envelhecida, em solução 0,01M Na ₂ SO ₄	94
Tabela 5.4.4:	Potenciais de corrosão (E _{corr}) e potenciais de quebra de	
	passividade (Eq) das amostras da liga Cu10Ni-3Al-1,3Fe, nas	
	condições solubilizada e em envelhecida, em solução 0,0001M	
	$Na_2S.9H_2O$	101
Tabela 5.5.1:	Potenciais de circuito aberto (E_{corr}) e potenciais de quebra de	
	passividade (Eq) das amostras solubilizada e envelhecida por	
	2, 16 e 1.032 h da liga Cu10Ni-3Al-1,3Fe, em solução 0,01M	
	NaCl	106

Tabela 5.5.2:	Potenciais de circuito aberto (Ecorr) e potenciais de quebra de	
	passividade (Eq) das amostras solubilizada e envelhecida por	
	2, 16 e 1.032 h da liga Cu10Ni-3Al-1,3Fe, em solução 0,01M	
	Na ₂ SO ₄	110
Tabela 5.5.3:	Potenciais de circuito aberto (E _{corr}) e potenciais de quebra de	
	passividade (Eq) das amostras solubilizada e envelhecida por	
	2, 16 e 1.032 h da liga Cu10Ni-3Al-1,3Fe, em solução 0,0001M	
	Na ₂ S.9H ₂ O	113
Tabela 6.2.1:	Principais resultados da aplicação de polarização sem e com	
	agitação e partículas	123
Tabela A.1.1:	Valores de rugosidade (Ra) das amostras ensaiadas em água	
	destilada por 12 h com 20% em peso de Al_2O_3 , em áreas de 80 x	
	80 μm	166
Tabela A.1.2:	Valores de perda de massa das amostras ensaiadas em água	
	destilada com 20% em peso de AI_2O_3 por 12 h	166
Tabela A.2.1:	Valores de perda de massa das amostras ensaiadas em água	
	destilada com 20% em peso de AI_2O_3 por 12 h	169

SUMÁRIO

1 INTRODUÇÃO	4
2 OBJETIVO	10
3 REVISÃO BIBLIOGRÁFICA	11
3.1 METALURGIA FÍSICA	11
3.1.1 Nucleação e Crescimento	16
3.1.2 Endurecimento por Precipitação	18
3.1.3 Precipitação Celular	19
3.2 RESISTÊNCIA À CORROSÃO DAS LIGAS CUPRONÍQUEL	22
3.3 CORROSÃO SELETIVA	27
3.3.1 Limites de Partição	28
3.3.2 Mecanismos de corrosão seletiva	30
3.4 CORROSÃO POR PITE	37
3.5 EROSÃO	41
3.5.1 Mecanismos de Erosão	41
3.5.2 Variáveis que Afetam a Erosão	44
3.6 CORROSÃO-EROSÃO	51
3.6.1 Sinergismo Corrosão-Erosão	53
4 MATERIAIS E MÉTODOS	55
4.1 ELABORAÇÃO DA LIGA	55
4.2 TRATAMENTOS TÉRMICOS E PROCESSAMENTO DA LIGA	56
4.3 PREPARAÇÃO DOS CORPOS-DE-PROVA	57
4.4 METODOLOGIA DOS ENSAIOS	59
4.4.1 Caracterização Microestrutural	59
4.4.2 Medidas de Microdureza	60
4.4.3 Ensaios de Tração	60
4.4.4 Eletrólitos	61
4.4.5 Procedimentos para os Ensaios de Corrosão e Corrosão-Erosão com	
Emprego de Potenciostato	62
4.4.5.1 Ensaios de Corrosão (Polarização Potenciodinâmica)	62

4.4.5.2 Procedimentos para os Ensaios Corrosão-Erosão Assistida por	
Polarização	64
4.4.6 Microscopia Óptica	68
4.4.7 Microscopia Eletrônica de Varredura	68
4.4.8 Difração de Raios-X	68
4.5 MATERIAL EROSIVO UTILIZADO NOS ENSAIOS DE CORROSÃO-	
EROSÃO E EROSÃO	68
5 RESULTADOS EXPERIMENTAIS	70
5.1 MEDIDAS DE MICRODUREZA	70
5.2 ENSAIOS DE TRAÇÃO	71
5.3 CARACTERIZAÇÃO MICROESTRUTURAL	74
5.3.1 Microscopia Óptica	74
5.3.2 Microscopia Eletrônica de Varredura	76
5.3.3 Difração de Raios-X	81
5.4 ENSAIOS DE CORROSÃO	83
5.4.1 Ensaios Eletroquímicos em Solução 0,01M NaCl	83
5.4.2 Ensaios Eletroquímicos em Solução 0,01M Na ₂ SO ₄	91
5.4.3 Ensaios Eletroquímicos em Solução 0,0001M Na ₂ S.9H ₂ O	99
5.5 ENSAIOS DE CORROSÃO-EROSÃO	104
5.5.1 Corrosão-Erosão Assistida por Polarização em 0,01M NaCl	104
5.5.2 Corrosão-Erosão Assistida por Polarização em 0,01M Na ₂ SO ₄	109
5.5.3 Corrosão-Erosão Assistida por Polarização em 0,0001M Na ₂ S.9H ₂ O	112
6 DISCUSSÃO DOS RESULATDOS	116
6.1 EFEITOS DE AQUECIMENTO A 550°C SOBRE A MICROESTRUTURA E	
PROPRIEDADES MECÂNICAS DA LIGA Cu-10Ni-3AI-1,3Fe	116
6.2 DESEMPENHO DA LIGA CU-10NI-3AL-1,3FE EM 0,01M NaCl	118
6.2.1 Ensaios Eletroquímicos	118
6.2.2 Ensaios de Corrosão-Erosão Assistidos por Polarização	123
6.3 DESEMPENHO DA LIGA Cu10Ni-3Al-1,3Fe EM SOLUÇÃO 0,01M Na ₂ SO _{4.}	130
6.3.1 Ensaios Eletroquímicos	130
6.3.2 Ensaios de Corrosão-Erosão Assistidos por Polarização	133
6.4 DESEMPENHO DA LIGA Cu10Ni-3Al-1,3FE EM 0,0001M Na ₂ S.9H ₂ O	139
6.4.1 Ensaios Eletroquímicos	139

6.4.2 Ensaios de Corrosão-Erosão Assistidos por Polarização	143
7 CONCLUSÕES	148
8 SUGESTÕES PARA TRABALHOS FUTUROS	152
9 REFERÊNCIAS BIBLIOGRÁFICAS	153
APÊNDICE A – ENSAIO DE EROSÃO	161
A.1 ENSAIOS DE EROSÃO EM ÁGUA DESTILADA	162
A.2 ENSAIOS DE EROSÃO EM 3,5% NaCl	167
A.3 DISCUSSÃO DOS RESULTADOS DOS ENSAIOS DE EROSÃO EM	
ÁGUA DESTILADA E 3,5% NaCl	169
ANEXO A – Desenho Técnico do Aparato Experimental dos	
Ensaios de Corrosão-Erosão	172

1 INTRODUÇÃO

A história da utilização das ligas cuproníquel em tubos de condensadores teve início em meados de 1920, quando se descobriu que esta liga apresentava maior resistência à corrosão que os latões, material normalmente utilizado nesta aplicação. Constatou-se ainda que o crescente teor de níquel promovia um aumento nas propriedades mecânicas da liga, sendo adotada na construção de embarcações navais a liga contendo 30% em massa de níquel.

Com o início do uso das ligas cuproníquel, surgiram os primeiros problemas, pois estas eram suscetíveis à corrosão-erosão devido à turbulência causada pela alta velocidade da água do mar utilizada nos sistemas de resfriamento. Em 1930 foi descoberto que pequenas adições de ferro e manganês provocavam efeitos benéficos com relação à resistência à corrosão-erosão, e o desenvolvimento das ligas cuproníquel com adições de ferro foi, então, realizado pela *British Non-Ferrous Metals Research Association,* que apresentou as primeiras publicações em 1939.¹ Devido a estas propriedades, foi possível solucionar os problemas dos tubos dos condensadores; estes efeitos puderam ser comprovados durante o período da Segunda Guerra Mundial.¹ Bailey (1951)², Stewart e LaQUE (1952)³ comprovaram o efeito benéfico da adição de ferro na resistência à corrosão-erosão das ligas cuproníquel. Atualmente, a liga cuproníquel 90-10 comercial (UNS C70600, com 1,3% em massa de ferro) é utilizada em sistemas abertos de resfriamento que envolvem trocadores de calor ar/água, nos geradores das usinas hidrelétricas.

A adição de ferro ainda garante um elevado grau de segurança quanto à corrosão intergranular, corrosão sob tensão e corrosão sob fadiga em meios marinhos, o que indica o emprego destas ligas na construção de evaporadores, mas isto somente se o ferro estiver em solução sólida.^{1,4-6} No entanto, o aumento do teor de ferro nas ligas cuproníquel provoca decréscimo das resistências à corrosão por depósitos e à corrosão por pite (Fig. 1.1).

Figura 1.1: Resistência à corrosão das ligas cobre-níquel-ferro.¹

Para as ligas cuproníquel 90-10, o valor máximo recomendado de ferro é de 2% (em massa)^{2,3}, pois valores superiores dificultam a sustentação da solução sólida, ocorrendo precipitação e um aumento da corrosão localizada. Os problemas associados à adição de ferro estão relacionados com a reduzida solubilidade do ferro nessas ligas à temperatura ambiente. A fase rica em ferro precipita no contorno de grão, deixando a liga suscetível à corrosão intergranular (Fig. 1.2). Por este motivo é necessária a realização de tratamentos térmicos de solubilização em temperaturas superiores a 800°C, que garante total solubilidade do Fe como mostra a Fig. 1.3.

Figura 1.2: Corrosão intergranular da liga de Cu-Ni-Fe que apresenta ferro precipitado no contorno de grão.⁷

Figura 1.3: Limite de solubilidade do ferro na liga cuproníquel 90-10.8
A adição de outros elementos também pode provocar efeitos benéficos na liga cuproníquel 90-10. Outro elemento que normalmente é encontrado nas ligas cuproníquel é o manganês, pois este introduz um efeito desoxidante na liga, no entanto, a adição de manganês não deve exceder 1% em massa. Bailey (1951)² mostrou que a adição de manganês nas ligas que contêm adição de ferro promoveu a melhora da resistência à corrosão-erosão. Alguns trabalhos⁸ mostram que pequenas adições de fósforo podem substituir, em parte, a adição de manganês na liga. O cromo também é um elemento encontrado nas ligas cuproníquel, que em quantidade superior a 3% em massa, provoca um aumento significativo nas propriedades mecânicas.⁹ A Fig. 1.4 mostra os resultados dos ensaios de perda de massa em algumas ligas cuproníquel, com e sem adição de elementos de liga, onde se nota que adições de ferro e alumínio melhoram a resistência à corrosão da liga. Os ensaios foram realizados com período de 30 dias em água do mar filtrada, com velocidade de 6,7 m/s.⁷

Figura 1.4: Perda de massa após 30 dias em água do mar filtrada, com velocidade de 6,7m/s. A linha tracejada indica a perda de massa da liga Cu-10Ni sem adições⁷

A literatura¹⁰⁻¹² apresenta, ainda, que a adição de alumínio promove grandes efeitos na resistência mecânica e melhora a resistência à corrosão em água do mar, e um exemplo é a liga Nibron (Cu14,5Ni-3Al-1,3Fe-0,3Mn), que é utilizada em instalações

marinhas. Os excelentes valores de resistência mecânica destas ligas estão associados à presença de precipitados de Ni₃Al.¹⁰⁻¹² Estudos recentes mostraram que a adição de 3% de alumínio, junto à adição de 1,3% de ferro, em ligas na condição monofásica, leva a maior resistência à corrosão seletiva do níquel (em meios contendo cloreto) e melhores propriedades mecânicas, comparativamente à liga normalmente utilizada (UNS C70600).^{13,14} Este processo de corrosão seletiva também é observado em trocadores de calor operando com água doce.¹⁵ No entanto, não há na literatura informações sobre o efeito do alumínio na corrosão-erosão das ligas cuproníquel.

Estes problemas de corrosão nos sistemas de resfriamento dos geradores levam a baixa confiabilidade no atendimento da demanda de energia elétrica, pois o funcionamento das usinas hidroelétricas, na sua capacidade nominal, depende do desempenho do sistema de resfriamento, pois os equipamentos têm limitações térmicas operacionais. Estas limitações podem provocar paradas não programadas das máquinas devido ao aquecimento excessivo dos geradores, redução de geração para manter a temperatura dos equipamentos abaixo do valor permitido em projeto, desgaste prematuro dos equipamentos e redução dos intervalos de manutenção periódica.¹⁵

Syrett¹⁶ menciona a necessidade de mais investigações sobre a resistência à corrosão-erosão de ligas de cobre em geral, e sugere que as falhas nos tubos de cuproníquel não ocorrem por mecanismos de corrosão isolados. Isto é, os mecanismos de corrosão seletiva e depósito podem levar à corrosão por pite, como apresentado por Mussoi et al.¹⁷ Tal fato é apresentado por Atsumi et al.¹⁸, que indica como causa das falhas dos tubos a presença de corpos alojados na parede, que acabam provocando os processos de corrosão por pite e por fresta. Os problemas de corrosão-erosão também podem estar associados à presença destes tipos de corrosão.

Observa-se destes fatos que as ligas cuproníquel têm uma participação de destaque na confecção de sistemas de resfriamento, entre outras aplicações. No entanto, ainda não estão totalmente esclarecidas as etapas das falhas associadas à corrosão. Além disso, destaca-se uma preocupação no que se refere à resistência à corrosão e à corrosão-erosão. Já é consagrado o efeito benéfico da adição de certos elementos de liga, em particular, de ferro e alumínio, mas os efeitos de tratamentos térmicos sobre a resistência à corrosão e a corrosão-erosão não são encontrados na literatura especializada. O presente trabalho de pesquisa investiga a resistência à corrosão e à corrosão-erosão em meio de cloreto, sulfeto e sulfato da liga Cu10Ni-3Al-1,3Fe, com diferentes tratamentos térmicos, visando contribuir para o desenvolvimento de materiais com melhor desempenho nestas solicitações.

2 OBJETIVO

O objetivo desta pesquisa é determinar a resistência à corrosão e à corrosão-erosão da liga Cu10Ni-3Al-1,3Fe, na condição solubilizada e após envelhecimentos a 550°C, em presença de íons cloreto, sulfato e sulfeto. Também é objetivo do trabalho identificar a microestrutura e as propriedades mecânicas nessas condições de tratamento térmico, obtendo-se assim uma caracterização ampla do desempenho desta liga.

3 REVISÃO BIBLIOGRÁFICA

3.1 METALURGIA FÍSICA

As ligas cuproníquel formam uma série contínua de soluções sólidas, permanecendo monofásicas em qualquer composição e em temperaturas superiores a 354,5°C, pois em temperaturas inferiores pode ocorrer o aparecimento de fases espinodais (α_1 e α_2), como mostrado na Fig. 3.1.1.

Como o objetivo do trabalho é estudar a liga cuproníquel 90-10 com adição de alumínio e ferro, também são apresentados os diagramas ternários dos sistemas Cu-Ni-AI e Cu-Ni-Fe (Fig. 3.1.2 a 3.1.3). Estes diagramas mostram que uma liga cuproníquel 90-10 com adições de ferro ou alumínio pode apresentar precipitados, conforme mostrado nas isotermas de 400°C (sistema Cu-Ni-Fe) e 500°C (sistema Cu-Ni-AI).

Figura 3.1.1: Diagrama de fases do sistema cobre-níquel.¹⁹

Figura 3.1.2: Diagrama de fases ternário do sistema cobre-níquel-alumínio.¹⁹

Figura 3.1.3: Diagrama de fases ternário do sistema cobre-níquel-ferro (isoterma 400°C).¹⁹ A fase γ neste diagrama representa a fase α do digrama do sistema Cu-Ni-Al.

Sobre a solução formada pelo cobre e o níquel pode-se dizer que é uma solução sólida substitucional, onde ocorre substituição direta de um tipo de átomo por outro, de forma que os átomos de soluto se localizam em posições normalmente ocupadas por átomos de solvente.

As ligas cuproníquel são um bom exemplo de ocorrência de solubilidade sólida extensa de um metal em outro; e isto pode ser explicado pelas regras de Hume-Rothery, que propõem quatro condições para que ocorra uma solubilidade sólida extensa:^{20,21}

 Fator de tamanho – onde a condição necessária para que ocorra solubilidade sólida extensa numa liga é que os diâmetros atômicos do soluto e do solvente não apresentem diferença maior que 15%. O fator de tamanho está relacionado diretamente com as deformações introduzidas pelos átomos de soluto no reticulado cristalino. Os átomos de cobre têm raio atômico aparente (128 pm) aproximadamente 2% maior que os de níquel (125 pm).

- Igualdade de estruturas cristalinas no caso em estudo, o cobre e o níquel apresentam a mesma estrutura cúbica de faces centradas (CFC).
- Valência química as valências dos dois elementos não devem diferir de mais de uma unidade, o cobre normalmente apresenta valência +2 e o níquel valência +3.
- 4) Posição relativa dos elementos na série eletroquímica estabelece que dois metais muito separados nessa série normalmente não formam ligas, mas se combinam conforme as regras de valência química. Por outro lado, quando os metais estão próximos na série eletroquímica, eles tendem a agir como se fossem quimicamente idênticos, o que resulta em ligações metálicas, como o caso das ligas Cu-Ni.²⁰

A presença do soluto na solução sólida causa uma deformação no reticulado cristalino devido à diferença de diâmetros atômicos; o ajuste desta deformação do reticulado é feito pela interação entre os átomos de soluto e os campos de deformação das discordâncias, levando à redução da energia total do sistema. No entanto, quando um cristal contém discordâncias e átomos de soluto substitucionais, é de particular interesse a interação entre soluto e discordância em cunha, já que os átomos substitucionais não reagem fortemente com discordâncias em hélice, cujo campo de deformação é quase cisalhamento puro. Assim, há um posicionamento preferencial dos átomos de soluto em regiões de tração e compressão associadas às discordâncias em cunha. Esse posicionamento preferencial dos átomos de soluto é um obstáculo à movimentação das discordâncias, o que provoca um aumento da resistência mecânica.

O posicionamento dos átomos de soluto substitucional está relacionado com o tamanho do átomo de soluto em relação ao átomo de solvente. Os átomos maiores expandem o reticulado vizinho, colocando-se em regiões de tração das discordâncias; no entanto, se forem menores contraem-no, colocando-se em regiões de compressão.

O aumento de resistência mecânica associado à solução sólida pode ser entendido, ainda, como o aumento da tensão de cisalhamento τ necessária para mover a discordância. Assim, supondo que cada átomo de soluto produz uma força F de

restrição sobre a movimentação da discordância de vetor de *Burgers* b, e que os átomos de soluto estão espaçados por uma distância média d, tem-se um incremento de tensão necessário para a movimentação da discordância por unidade de comprimento.

Já a força F pode ser entendida como sendo a força gerada da diferença entre a força de ligação química entre os átomos de soluto e solvente (que pode ser traduzida pela diferença de valores nos módulos de rigidez transversal (G) das espécies atômicas envolvidas) e da deformação (ϵ) sofrida pelo reticulado do solvente devido à presença do soluto. Considerando átomos de soluto substitucionais, que provocam deformação simétrica do reticulado cristalino, o aumento de resistência mecânica é representado pelo aumento da tensão de cisalhamento, e pode enfim ser definido como (onde x_f é a fração atômica do soluto):

$$\Delta \tau = \frac{G.\epsilon}{4} \sqrt{x_{f}}$$
 (eq. 3.1.1)

Assim, o material ficaria mais resistente com o aumento da deformação pontual exercida pelo soluto e com o aumento da fração deste na solução.

Além do endurecimento propriamente dito, as soluções sólidas podem levar a um envelhecimento dinâmico, caracterizado no ensaio de tração como aumentos abruptos de tensão durante a deformação plástica, levando a uma curva de tensão-deformação com aspecto serrilhado. Fenômeno comum em ligas de alumínio, também conhecido como "*jerky flow*", foi estudado em detalhes por Portevin e LeChatelier, recebendo o efeito nas curvas de tração o nome destes autores. Sem dúvida, é resultado da possibilidade de movimentação dos átomos de soluto na temperatura de deformação, em determinadas taxas de deformação, restabelecendo a interação entre discordâncias e soluto: os aumentos de tensão que geram o serrilhado são, portanto, necessários para vencer a interação soluto-discordância anteriormente discutida.²¹

Todo o conhecimento de endurecimento por solução sólida está sedimentado no trabalho de Kocks²⁴, que trata os sistemas que endurecem por solução sólida através dos "modelos de calha", onde os átomos de soluto, devidamente posicionados nas discordâncias, criam "calhas" onde a energia do sistema é menor

que a resultante do posicionamento das discordâncias longe do campo de interação do soluto. Além disso, o modelo proposto no trabalho em questão explica também como forças repulsivas entre soluto e discordância podem levar ao endurecimento, e como a redução na energia de defeito de empilhamento imposta por alguns solutos pode contribuir no fenômeno de aumento de resistência mecânica. Muitos sistemas binários apresentam grande solubilidade do soluto, e portanto o endurecimento por solução sólida nestes sistemas deve ser estudado em detalhe.

Vale lembrar que a diferença de tamanho dos constituintes da liga em estudo neste trabalho (o raio atômico do cobre é 128 pm, enquanto o do níquel é 125 pm), leva a distorções do reticulado cristalino da fase matriz, uma das causas do endurecimento por solução sólida observado nas ligas cuproníquel. A adição de ferro (124 pm) e de alumínio (143 pm) também levam a distorção do reticulado cristalino do cobre. No entanto, a diferença de tamanho entre o cobre e o alumínio é mais significativa, o que provoca nestes sistemas um maior endurecimento por solução sólida.

3.1.1 Nucleação e Crescimento

Estas relações de solubilidade também têm grande significado prático por tornarem possível o endurecimento por precipitação, ou envelhecimento, que é um processo importante de endurecimento em ligas não-ferrosas. A precipitação de fases a partir de uma solução sólida supersaturada ocorre por um processo de nucleação e crescimento. O processo de nucleação normalmente é um processo complicado, pelo fato da fase precipitada em muitos casos não se assemelhar àquela presente na estrutura final, podendo apresentar estruturas cristalinas intermediárias, antes que se desenvolva o precipitado final estável. O precipitado pode, ainda, nuclear de dois modos básicos: formando-se nos defeitos cristalinos, tais como discordâncias, partículas de impureza ou descontinuidades como os contornos de grão (num processo conhecido por nucleação heterogênea), ou através da nucleação homogênea, pela formação espontânea dos precipitados através de flutuações de composição de soluto.²¹

Após a nucleação, as partículas de precipitados crescem como resultado da difusão de soluto das vizinhanças das partículas, e esse processo é chamado de crescimento. Nenhuma precipitação pode ocorrer até que se inicie a nucleação, mas, uma vez iniciada, a solução sólida pode perder seus átomos de soluto de duas maneiras, tanto pelo crescimento das partículas já formadas, como pela formação de núcleos adicionais. Em outras palavras, a nucleação pode continuar a ocorrer simultaneamente com o crescimento das partículas já formadas. O desenvolvimento da precipitação em uma dada temperatura é função do tempo. Em geral, a precipitação não se inicia imediatamente, sendo detectável somente após um determinado tempo, chamado de tempo de incubação, que representa o tempo necessário para a formação de núcleos estáveis e visíveis. A velocidade de precipitação varia com a temperatura, como mostra qualitativamente a Fig. 3.1.4.²¹

Figura 3.1.4: Tempo para a formação de 100% dos precipitados de uma liga supersaturada.²¹

O efeito mais importante da precipitação de uma segunda fase numa matriz metálica é o endurecimento, que normalmente é apresentado através de um gráfico que mostra o efeito do tempo de envelhecimento sobre a dureza (Fig. 3.1.5). A forma da curva de envelhecimento é basicamente uma função de duas variáveis: a temperatura em que se dá o envelhecimento e a composição da liga.

Figura 3.1.5: Variação da dureza durante o tratamento de envelhecimento.²¹

3.1.2 Endurecimento por Precipitação

Em relação ao endurecimento causado por precipitação, pode-se dizer que existem vários mecanismos de endurecimento, e o predominante em determinada liga não é necessariamente importante em outra. Contudo, de um modo geral, pode-se dizer que um aumento de dureza pode estar relacionado com o aumento da fração volumétrica de uma fase mais dura que a matriz, e em consequência com uma maior dificuldade de movimentação das discordâncias, considerando-se neste caso as relações de coerência entre o precipitado e a matriz. Na trajetória da discordância, esta deve passar por precipitados ou se movimentar entre eles. Em qualquer um dos casos, pode se demonstrar que deve haver um aumento da tensão para que a discordância se movimente pelo reticulado que contenha partículas precipitadas.^{21,25}

Um efeito importante no endurecimento causado por precipitação é o efeito provocado pela presença de partículas finamente dispersas, que acabam gerando um aumento na tensão para que as discordâncias se movimentem no reticulado, provocando assim um aumento na dureza do sistema. Para explicar este efeito são propostos basicamente dois mecanismos, um onde o precipitado é cortado pela discordância e outro onde a discordância acaba se curvando em torno dos precipitados. O aumento originado pela resistência provocada pelo corte do precipitado depende basicamente da resistência ao cisalhamento do mesmo. No outro mecanismo as discordâncias se curvam no precipitado, podendo ocorrer à

formação de anéis em torno do precipitado (mecanismo de Orowan). Quando os anéis adjacentes se encontram, eles se cancelam, o que permite que a discordância continue a movimentar-se, mas deixa atrás um anel de discordância em torno do precipitado, que acaba provocando um aumento no campo de tensões e irá aumentar à resistência a movimentação da próxima discordância.^{21,26}

No trabalho de Ardell²⁶ são discutidos alguns dos fenômenos de interação das discordâncias-partículas, onde estas podem ser subdivididas em algumas categorias, dependendo de como o obstáculo seja considerado, como um ponto ou como uma partícula de tamanho finito. No entanto, os desenvolvimentos teóricos de endurecimento por precipitação acabam na grande maioria das vezes considerando o obstáculo finito como um ponto, prática esta que é justificada devido ao espaçamento das partículas no plano ser muito maior quando comparado às dimensões das partículas, isto quando a fração em volume de partículas for pequena. Para fazer as correções faz-se necessário reconsiderar o efeito do tamanho da partícula finita, como por exemplo, a distância entre as partículas no plano, o raio e a fração volumétrica das partículas. A partir destes valores é possível obter a força crítica exercida pela discordância sobre o obstáculo e calcular o valor da tensão crítica de cisalhamento do material. Caso esta tensão não seja atingida ocorrerá a formação dos anéis de discordâncias descritos no mecanismo de Orowan.

3.1.3 Precipitação Celular

A precipitação celular é uma transformação que ocorre pela decomposição da matriz de uma fase supersaturada (por exemplo, α_{ss}) em uma estrutura bifásica contendo uma fase α com a mesma estrutura cristalina da original, porém empobrecida em soluto e uma β precipitada, de acordo com a reação:

$$\alpha_{ss} \rightarrow \alpha + \beta \tag{eq. 3.1.2}$$

Morfologicamente, esta transformação é muito similar à reação eutetóide típica, onde uma fase sólida se transforma em duas outras fases, em forma de lamelas. No entanto, a reação é controlada por difusão volumétrica, e portanto, ocasiona num perfil de concentração contínuo na matriz não transformada, à frente da interface de separação com o produto transformado.²⁷

A precipitação celular também é conhecida como precipitação descontínua, onde a interface atua como frente de reação, avançando sobre a matriz supersaturada do contorno de grão adjacente e deixando para trás uma estrutura lamelar. A Fig. 3.1.6 ilustra de forma esquemática o desenvolvimento da precipitação celular. Os modelos propostos para a iniciação da precipitação celular podem ser dividos em: migração do contorno de grão induzida por precipitação e precipitação em contorno de grão que se move estimulado por uma determinada força motriz interna. O primeiro modelo apresenta um processo de nucleação em forma de discos ou placas, em um lado do contorno de grão, com uma interface de mínima energia superficial ao longo do contorno. Do outro lado do contorno, o precipitado desenvolve uma interface de alta energia. Para eliminar este desequilíbrio energético, o contorno de grão migra para substituir a interface de maior energia pela de menor. Durante a movimentação do contorno, novos precipitados podem ser formados, localizando-se paralelamente ao primeiro e mantendo a orientação cristalográfica de baixa energia (Fig. 3.1.7). O outro modelo apresenta dois mecanismos, onde o primeiro sugere que no início do envelhecimento, o contorno de grão não ocupado move-se sob a influência da força da capilaridade. Após percorrer certa distância, o contorno é ocupado por alotriomorfos que se formam devido ao acúmulo de soluto na interface entre os grãos. A contínua segregação de soluto para os alotriomorfos proporciona o desenvolvimento destes como lamelas de fase β (Fig. 3.1.8). O segundo mecanismo propõe que o contorno de grão não ocupado move-se induzido por difusão e não pela força de capilaridade.²⁸⁻³⁰

Figura 3.1.6: Ilustração esquemática mostrando os passos da sequência do processo do desenvolvimento da precipitação celular.²⁷

Figura 3.1.7: Mecanismo para a iniciação da precipitação descontínua a partir de um contorno de grão inicialmente ocupado.²⁸

Figura 3.1.8: Mecanismo para a iniciação da precipitação descontinua a partir de um contorno de grão inicialmente não ocupado.³⁰

3.2 RESISTÊNCIA À CORROSÃO DAS LIGAS CUPRONÍQUEL

O cobre é encontrado na natureza na forma combinada, e é relativamente fácil obtêlo puro por redução dos seus compostos. Não é um material muito ativo quimicamente e oxida muito lentamente ao ar, em temperatura ambiente. Na série eletroquímica dos elementos, o cobre não desloca o hidrogênio, mesmo em soluções ácidas. Como o cobre não é inerentemente reativo, a velocidade de corrosão é comumente baixa, mesmo quando desprovido da película passiva e, quando ocorre a quebra da película passiva, não há um ataque tão rápido como acontece com metais mais reativos.^{31,32}

A proteção das ligas de cobre está relacionada com a camada de óxido Cu₂O formada na superfície, e que é aderente. Já a taxa de crescimento desta camada pode ser descrita por uma equação logarítmica.^{33,34} Neste caso, uma vez que o óxido é formado sobre a superfície metálica, e que separa fisicamente o metal do oxigênio, a oxidação posterior envolve duas etapas: as reações nas interfaces metal-óxido e óxido-oxigênio, e o transporte de material na forma de cátions metálicos, ânions de oxigênio e elétrons, através do óxido. A mais lenta das etapas controla a

velocidade de crescimento do óxido. Apesar da película apresentar um caráter protetor, o processo de corrosão continua ocorrendo, onde os íons de cobre e os elétrons continuam migrando sem interrupção pela película de Cu₂O. Isto ocorre porque esta película é semicondutora do tipo-*p* (ou deficiente em elétrons), com um alto número de lacunas e baixa resistência elétrica.^{34,35}

Adições de níquel, alumínio, ferro, zinco e estanho geralmente reduzem significativamente as taxas de corrosão, e também podem melhorar ou promover outras propriedades desejáveis.³⁸ No caso das ligas cuproníquel, os autores North e Pryor³⁶ propõem que o efeito benéfico do níquel está relacionado com a incorporação de íons de níquel nos defeitos do arranjo do filme de Cu₂O, diminuindo a condutividade iônica e eletrônica. Outros autores⁴⁰ mostram que para adições superiores a 40% em massa de níquel, as taxas de corrosão (Fig. 3.2.1) estabilizam-se em soluções contendo cloreto, devido à formação de outra camada de atacamita (Cu₂(OH)₃Cl) que se sobrepõe a camada de Cu₂O. Estas reações produzem um óxido mais resistente em alguns potenciais, que pode ser mais ativo em outros, podendo ocorrer a dissolução preferencial de um dos elementos da liga, o que promove o processo de corrosão seletiva.³⁷

Figura 3.2.1: Taxa de corrosão (mg/dm²/dia) de ligas cuproníquel em solução 3% NaCl à 80°C (exposta por 48 horas).⁴⁰

Mathiyarasu et al⁴¹ propõem que a passivação das ligas cuproníquel em soluções contendo cloreto de sódio (NaCl) é devida a uma película protetora do óxido Cu₂O durante a polarização anódica. Entretanto, os íons cloreto adsorvem na superfície e ocupam as lacunas do oxigênio na película de Cu₂O, permitindo a formação de uma película porosa não protetora. Quando a relação entre Cu⁺:Cl⁻ é superior a um, a dissolução de Cu₂O pode ocorrer nas áreas onde a concentração do íon do cloreto é maior. A presença de íons de níquel também pode provocar a formação de lacunas na película, devido à formação óxidos solúveis, que acaba favorecendo a formação de CuCl₂, o que reduz também a proteção da película. Entretanto, adições de ferro melhoram a resistência de corrosão devido a formação de óxidos hidratados de ferro nos produtos da corrosão, melhorando desse modo sua ação protetora. As adições de ferro poderiam também melhorar a resistência à corrosão pela formação do óxido

Segundo Bengough *et al apud* Kear et al⁴², a camada protetora na superfície do cobre em soluções neutras contendo cloreto consiste basicamente, mas não inteiramente, de produtos de corrosão. Assume-se que inicialmente os produtos de cobre formados são CuCl, de acordo com a reação:

 $Cu^+ + Cl^- \rightarrow CuCl$

Propõe-se que CuCl, sendo ligeiramente solúvel em soluções contendo cloreto de sódio, reaja para produzir o óxido Cu₂O, que constitui a camada protetora, em uma primeira etapa. O óxido Cu₂O geralmente sofre oxidação produzindo os compostos Cu(OH)₂, Cu₂(OH)₃Cl e CuCO₃.Cu(OH)₂ na presença de cloreto, conforme apresentado na Fig. 3.2.2, que mostra dois diagramas de potencial-pH relativos ao sistema Cu-Cl-H₂O. No entanto, a natureza química e a escala de formação estão relacionadas com a fonte de oxigênio. Uma representação esquemática do desenvolvimento dos produtos de corrosão para o mecanismo proposto pode ser observada na Fig. 3.2.3.⁴²

Figura 3.2.2: Diagramas de equilíbrio potencial–pH para o sistema ternário Cu-Cl-H₂O, 25°C. Na construção destes diagramas não foram considerados alguns derivados do cloro como: HClO, ClO⁻, HClO₂,ClO₂⁻, ClO₃⁻, ClO₄⁻, assim como Cl₂ gasoso e dissolvido.⁴³

Figura 3.2.3: Esquema do desenvolvimento dos tipos de produtos de corrosão do cobre em água do mar.⁴²

A presença de pequenas concentrações de sulfeto na solução de NaCl pode provocar alterações visíveis dos produtos de corrosão, que normalmente variam de verde para cinzento e preto. A presença de sulfeto acaba provocando a alteração da formação da película protetora. Esta alteração na formação da película se deve as

novas reações que ocorrem, como por exemplo, a reação de corrosão do cobre na presença de sulfeto, que pode ser descrita por:

 $4Cu + 2H_2S + (O_2)_{dissolvido} \rightarrow 2Cu_2S + 2H_2O$

No caso das ligas cuproníquel, o filme formado em soluções contendo sulfeto é uma mistura de Cu₂O e Cu₂S, como mostra a Fig. 3.2.4, além da presença de Cu₂(OH)₃Cl e NiCl₂, que podem influenciar ainda na formação dos filmes de Cu₂O e Cu₂S. O aumento das taxas de corrosão nestas ligas devido à presença de sulfeto na solução é atribuída ao aumento dos produtos porosos devido à reação catódica do oxigênio.^{8,44,45}

Figura 3.2.4: Diagrama de potencial-pH do cobre em água do mar contendo sulfeto.45

3.3 CORROSÃO SELETIVA

A corrosão seletiva é um processo de corrosão caracterizado pelo ataque a um dos elementos constituintes de uma liga metálica, onde um dos elementos é menos nobre que o outro.⁴⁶⁻⁵¹ Os primeiros relatos sobre este tipo de corrosão ocorreram a mais de cem anos. Já a preocupação com este tipo de corrosão só surgiu durante a Primeira Guerra Mundial, por causa dos problemas de dezincificação nos tubos dos condensadores dos navios de guerra Britânicos.⁵⁰ No caso das ligas de cobre, normalmente a superfície afetada por este tipo de corrosão apresenta modificação da coloração. No entanto, não há evidências visíveis de perda do metal.^{46-49,50}

O processo de corrosão seletiva pode ocorrer de forma localizada (*plug type*) ou generalizada (*layer type*).⁴⁹⁻⁵² No primeiro caso, pequenas áreas da liga metálica são afetadas, podendo comprometer de maneira localizada a seção, tendo um efeito similar ao observado no processo de corrosão por pite. Já o tipo generalizado (*layer type*) causa ataque seletivo de toda a superfície exposta ao meio corrosivo, deixando uma camada remanescente porosa de cobre puro ou quase puro, o que acaba provocando a diminuição da resistência mecânica, por causa da diminuição da espessura da parede.^{46,51} A falha ocorrerá quando a penetração do ataque for suficiente para diminuir a resistência mecânica do material, podendo atingir níveis não suportáveis em condições de serviço. Às vezes, podem ocorrer os dois tipos de corrosão seletiva no mesmo sistema liga metálica/eletrólito.^{46,50} A Fig. 3.3.1 ilustra esquematicamente os tipos de ataque mencionados. Este processo de corrosão ocorre em uma série de sistemas, sendo que alguns recebem nomes particulares como, por exemplo, a corrosão seletiva do níquel nas ligas cuproníquel, conhecida como desniquelação.

Figura 3.3.1: Ilustração esquemática dos tipos de ataque por corrosão seletiva.⁴⁶

3.3.1 Limites de Partição

Poucos estudos eletroquímicos questionaram a existência dos limites de partição nas ligas binárias, uma vez que, a maioria dos trabalhos se concentra na iniciação do processo de corrosão seletiva. O limite de partição é a mínima concentração de metal mais nobre da liga, acima da qual ocorre dissolução preferencial.⁵³ Alguns estudos sugerem que existam limites de partição em muitos sistemas, particularmente em ligas binárias, isto é, existem composições destas ligas em que o processo de corrosão seletiva não ocorre.⁵⁴ A representação esquemática feita por Pickering⁵⁵ (Fig. 3.3.2), ilustra este limite divisor, ou a limitação de partição para ligas binárias (A-B), em três regiões (intervalo de potencial do eletrodo), conforme o comportamento de dissolução. A primeira região que é definida pelas curvas 1 e 4, é caracterizada pela dissolução do metal menos nobre (B) e o acúmulo do componente mais nobre na superfície (A), com apenas uma dissolução uniforme de B. Já na segunda região que é definida pelas curvas 1 e 2, a taxa de dissolução de A é mais elevada, e ocorre um aumento da corrente com um pequeno aumento no potencial, que é caracterizado como potencial crítico (Eq), conforme pode ser observado nas curvas 1 e 2, onde se observa a dissolução do metal menos nobre, de forma preferencial. O processo de corrosão seletiva ocorre nesta região numa

faixa de potenciais entre as curvas 3a e 4 e para várias composições de liga, com a formação de uma camada porosa enquanto o componente menos nobre é dissolvido. O comportamento apresentado acima pode ser observado na Fig. 3.3.3. Pode-se dizer ainda que quanto mais elemento nobre a liga tiver em sua composição, mais nobre será o Eq, não permitindo que ocorra o processo de corrosão generalizada, mas sim corrosão seletiva. Se observarmos alguns dos valores dos potencias de eletrodo dos elementos da liga em estudo (Tab. 3.3.1), conclui-se que o cobre é o elemento mais nobre e, com o seu elevado teor (85,7% na condição solubilizada da liga), pode-se esperar a corrosão seletiva do Ni, Al e Fe.

Reação	E° (V _H)
$Cu^+ + e = Cu$	+0,521
$Cu^{2+} + 2e = Cu$	+0,342
Fe ³⁺ + 3e = Fe	-0,037
Ni ²⁺ + 2e = Ni	-0,257
$Fe^{2+} + 2e = Fe$	-0,447
$AI^{3+} + 3e = AI$	-1,662

Tabela 3.3.1: Valores dos potenciais de eletrodo dos elementos da liga em estudo a 25ºC.56

A transição entre os comportamentos de corrosão seletiva observados ainda não está completamente clara. No entanto, quando se atinge o potencial no qual o metal mais nobre (A) começa a dissolver (curva 3b), ocorre o comportamento descrito pela curva 3a, onde não ocorre o processo de corrosão seletiva e não há a formação de porosidade. O comportamento descrito pela região definida pelas curvas 1 e 2, é referenciado como do tipo I, enquanto o comportamento da região acima da curva 3b é referenciado como do tipo II, sendo que a transição do comportamento do tipo I para o do tipo II está diretamente relacionada com a composição da liga.⁵⁴

Figura 3.3.2: Ilustração do comportamento das ligas que sofrem processo de corrosão seletiva.

Figura 3.3.3: Curvas de polarização anódica e o potencial crítico de dissolução (Eq) do Cu na liga Cu-Au em solução de 0,1M Na₂SO₄/0,01M H₂SO₄.⁵¹

3.3.2 Mecanismos de Corrosão Seletiva

A velocidade de corrosão de uma liga AB homogênea pode ser estimada a partir da superposição das reações anódicas dos elementos puros. Isto equivale a considerar que a solução sólida pode ser descrita pelo modelo de uma dispersão heterogênea de dimensões atômicas, com uma fração f_i da área para cada componente. Desta forma, a densidade de corrente anódica i_{AB} da liga binária AB, em um potencial de eletrodo, é então obtida pela equação:

$$i_{AB} = f_A i_A + f_B i_B$$
 (eq. 3.3.1)

onde i_A e i_B são as densidades de corrente dos componentes puros no mesmo potencial.

Em consequência deste raciocínio, uma liga AB (curva vermelha da Fig. 3.3.4) tem seu potencial de corrosão entre os potenciais de corrosão dos elementos A e B puros. Ainda utilizando este raciocínio, pode-se dizer que neste potencial o elemento A presente na liga AB, tem uma diminuição da dissolução, enquanto a dissolução de B sofre um aumento, comparativamente aos elementos puros. Isto mostra que o processo de corrosão seletiva é possível para este sistema sem a aplicação de potencial externo. Estas alterações nas velocidades de dissolução dos elementos estão relacionadas com as posições relativas das curvas de oxigênio (curvas azuis), além das posições das curvas anódicas de A e B. Também é possível ocorrer a deposição do elemento mais nobre (A), dependendo do potencial de corrosão da liga (E_{corr liga}).

Figura 3.3.4: Curvas esquemáticas para a liga AB, para os elementos A e B, e para a reação do oxigênio.

Para o processo de corrosão seletiva são propostos seis modelos, que são designados como: difusão em volume, difusão superficial, difusão de lacunas, formação de óxido, filtragem e dissolução-redeposição.⁵⁴ Dos seis modelos, apenas três são propostos para as ligas cuproníquel, sendo estes: difusão em volume, difusão superficial e dissolução-redeposição.^{57,58}

Entre os mecanismos envolvendo difusão, o mais citado pela literatura para tentar explicar o mecanismo de corrosão seletiva é o mecanismo de difusão em volume, que foi introduzido por Wagner e Pickering⁵⁹. O mecanismo propõe que o componente menos nobre é removido por ionização, e por difusão novos átomos desse elemento são conduzidos até a superfície do metal para que ocorra mais dissolução, e portanto um fornecimento constante de metal menos nobre deve ser mantido por difusão em direção à interface corroída. Pode-se esperar que estes átomos tenham uma tendência crescente a se mover para os locais onde o processo de dissolução do metal menos nobre está ocorrendo, já que o fluxo de difusão se dará da região com maior concentração deste elemento (substrato metálico) para a região desprovida deste elemento (a superfície, onde ocorre o processo de corrosão seletiva). Tal fato pode ser observado em altas temperaturas, onde a difusão pode ocorrer rapidamente em algumas ligas. Estes dados de difusão para altas temperaturas podem ser extrapolados para valores mais baixos, como a temperatura ambiente, onde a difusão é muito mais lenta. Entretanto, a difusão na presença de corrosão seletiva pode ocorrer mais rapidamente, devido aos efeitos de difusão nos contornos de grão, ou ao aumento do número de lacunas formadas pela dissolução.^{51,55} O conceito principal deste mecanismo está relacionado com o aparecimento de lacunas, e a movimentação destas para o interior do metal; assim, este grande número de lacunas nas regiões adjacentes à interface liga/eletrólito, aumentaria a difusão do elemento que sofre corrosão seletiva. Deste modo, o aumento de átomos de cobre devido à dissolução do níguel no material faz ainda com que o material na superfície do metal fique cada vez mais nobre, aumentando assim a densidade de corrente anódica do metal menos nobre (B). Este processo acaba provocando um aumento na concentração de lacunas em contato com o eletrólito, o que favorece o processo de difusão. Isto facilita a difusão das lacunas para as camadas mais internas, permitindo que a difusão do metal menos nobre (B)

ocorra em temperatura ambiente.^{51,54} Este processo de formação de lacunas pode ser visualizado na Fig. 3.3.5.

Figura 3.3.5: Desenho esquemático mostrando a formação de lacunas na superfície da liga AB, durante a corrosão seletiva pelo mecanismo de difusão em volume.⁵¹

Análises mais detalhadas desse mecanismo foram realizadas com ligas cobre-ouro (Cu-Au), que mostram que um aspecto importante deste modelo está relacionado com a interdifusão dos átomos do Cu e do Au, e a movimentação da frente da reação (liga/interface eletrólito). Assumindo que, dentro de uma zona de interdifusão de espessura (δ_1), o fluxo de cobre para a superfície é oposto ao fluxo de ouro em direção ao interior da liga, pode-se dizer que a camada de interdifusão do ouro no cobre se torna eficaz, após um determinado tempo, quando se atinge uma espessura de penetração (δ). Alguns autores⁵¹ apresentam ainda que o ponto crucial do mecanismo de difusão em volume está na evolução da zona de interdifusão, fato este que está diretamente relacionado com a baixa difusão das lacunas no Cu na temperatura ambiente, o que acaba não permitindo a dissolução seletiva do componente pelo mecanismo em questão. Esta linha de raciocínio é válida se o aumento do fluxo de lacunas for alto. Sendo o fluxo de lacunas alto, a superfície da liga terá um controle instável de difusão em volume durante o processo de dissolução seletiva, que provocará um aumento da rugosidade da superfície conforme mostra a Fig. 3.3.6. O excesso no aumento da espessura rugosa pode

exceder a espessura eficaz da zona de interdifusão.⁶⁰ Estes dados desenvolvidos para a liga Cu-Au podem ser extrapolados para as ligas cuproníquel (Cu-Ni), onde o cobre, neste caso, é o metal mais nobre.

ligas homogêneas sob corrosão seletiva, de acordo com o mecanismo de difusão em volume. (a) Estado inicial, (b) e (c) estados intermediários, e (d) estado final da zona de difusão e da espessura da camada rugosa.⁶⁰

Já o modelo de difusão superficial baseia-se no fato da difusão superficial ser mais rápida que a interdifusão em volume, uma vez que a dissolução do metal menos nobre gera um grande número de lacunas na superfície que migram em uma profundidade menor, portanto é mais fácil ocorrer. Assim, o modelo de difusão superficial facilitaria o processo de corrosão seletiva, pois as taxas de difusão superficial ocorreriam com ordens de grandeza maiores que as taxas de difusão conhecidas. Este modelo ainda sugere que a dissolução do metal menos nobre gera um grande número de lacunas que se mantêm nas camadas atômicas próximas à superfície, criando um rearranjo do metal. Estas lacunas inicialmente criam uma distorção da região que recompõe o metal mais nobre em ilhas que vão crescendo para superfície, o que acaba permitindo a remoção do metal menos nobre. Outros autores⁵¹ sugerem que os contornos de grão são ativados durante o processo seletivo, permitindo que o metal menos nobre se difunda rapidamente para superfície. Os contornos durante este processo acabam se movendo sob a influência da difusão, isto é, ocorre um fenômeno de difusão que induz a migração do contorno de grão (Diffusion Induced Grain Mobility - DIGM), que pode levar à nucleação e o crescimento de novos grãos.

Apesar dos modelos de difusão serem citados com bastante frequência na literatura, o modelo caracterizado pela dissolução da liga e redeposição do metal mais nobre, é um dos aceitos para explicar o início do processo de corrosão seletiva nas condições de temperatura ambiente. Esta idéia é reforçada pelo fato dos mecanismos de difusão não serem muito relevantes na temperatura ambiente. Uma forma de demonstrar a dificuldade de difusão do Ni é utilizar a segunda lei de Fick (eq. 3.3.2), para barra semi-infinita, para o cálculo do perfil de Ni em função do tempo e distância da superfície, a temperatura de 25°C.

$$\frac{C_{x} - C_{0}}{C_{s} - C_{0}} = 1 - \operatorname{erf}\left(\frac{x}{2\sqrt{D.t}}\right)$$
 (eq. 3.3.2) *

Assumindo uma solução sólida de Ni no Cu, com valor $C_0 = 10\%$ Ni e $C_S = 0$ (teor de Ni da superfície), pode-se estimar o tempo necessário para que seja atingido um valor C_X (teor de Ni a uma distância x da superfície) para, por exemplo, uma profundidade 0,01 mm da superfície (distância x). O valor C_X pode-se ser conseguido na literatura¹³, onde foi constatado, para ligas cuproníquel em 0,01M NaCl, após processo de corrosão seletiva, um teor de Ni na matriz de 8,9%. Esta estimativa resulta em 3,71.10⁴⁵ horas, valor este que acaba desqualificando a possibilidade de ocorrência destes mecanismos envolvendo difusão. O mais coerente é que os mecanismos de difusão estão associados a outros mecanismos, como por exemplo, o de dissolução-redeposição, que é apresentado a seguir.

No modelo de dissolução-redeposição, em um primeiro instante ocorre a dissolução da liga AB sob circunstâncias anódicas e, em seguida, redeposição do elemento mais nobre (A)^{51,59}, que está presente na solução, como mostra a Fig. 3.3.7, para uma liga binária homogênea. Alguns autores⁵¹ sugerem que a heterogeneidade eletroquímica poderia contribuir para a redeposição em sítios catódicos ricos em A, e isto levaria a uma alteração superficial devido a redeposição do metal mais nobre na superfície. Esta alteração provocaria o aparecimento de composições intermediárias na superfície da liga, diferentes da composição da liga, permitindo que o processo de corrosão seletiva ocorra em potenciais longe do potencial de corrosão da liga metálica.⁵¹

^{*} Os valores de D₀ e de Q_D do níquel utilizados no calculo foram retirados do livro do PORTER e EASTERING.²⁷

A superfície com depósitos pode ainda se comportar como um par galvânico, onde a presença dos cristais do metal mais nobre depositados na superfície aceleraria a velocidade de corrosão da liga.

Figura 3.3.7: Desenho esquemático da dissolução seletiva de uma liga binária AB, conforme o mecanismo de dissolução-redeposição.⁵¹

Beccaria e Crousier⁴⁵ propuseram que o mecanismo de dissolução e redeposição das ligas cuproníquel, no processo de corrosão seletiva, obedece a seguinte relação:

$$Z = \frac{\% \text{Cu}(\text{óxido})}{\% \text{Ni}(\text{óxido})} \cdot \frac{\% \text{Ni}(\text{metáli co})}{\% \text{Cu}(\text{metáli co})}$$
(eq. 3.3.3)

onde este fator Z leva em conta a % em massa de cada componente. Os resultados deste trabalho mostraram que quando o fator Z é menor que um, ocorre à dissolução preferencial do níquel. O gráfico apresentado na Fig. 3.3.8 mostra a relação entre o fator Z e algumas ligas cuproníquel, para ensaios de imersão em água do mar. Os autores também relatam que pequenas adições de ferro e outros elementos podem mudar a relação de dissolução Cu/Ni.

Figura 3.3.8: Relação entre o fator Z de ligas cuproníquel em água do mar. (1) 24 horas, (2) 66 horas, (3) 240 horas, (4) 360 horas e (5) 720 horas de exposição.⁵⁶

3.4 CORROSÃO POR PITE

A corrosão por pite é um tipo de corrosão localizada que se caracteriza pelo ataque de pequenas áreas da superfície metálica, sendo uma limitação importante para o uso seguro e confiável de muitas ligas metálicas em várias aplicações. A impossibilidade da previsão da ocorrência do pite e o desconhecimento da velocidade de sua propagação dificulta a realização de projetos de engenharia.

Embora exista uma carência de mecanismos que expliquem satisfatoriamente o processo de corrosão por pite em ligas de cobre, existem outros mecanismos já consagrados na literatura para explicar a formação de pites em outros metais. Estes mecanismos são descritos para um metal genérico, todavia não se espera que a sua aplicação possa abranger todos os casos de corrosão por pite, mas podem servir como ponto de partida para uma explicação. Dentro desta linha de raciocínio, pode-se dizer que o processo de corrosão por pite ocorre em duas etapas: nucleação e crescimento. A nucleação ocorre pela quebra da passividade em algum ponto da superfície do metal, que provoca em seguida a formação de uma célula eletroquímica, onde o anodo é uma área microscópica do metal ativo e o catodo é toda a área macroscópica restante do material. A diferença de potencial entre anodo

e catodo faz, por efeito galvânico, com que a dissolução na área anódica seja muito acentuada, originando uma densidade de corrente muito alta. Uma vez iniciado, o pite cresce por um processo auto-catalítico, isto é, no interior do pite são criadas condições que mantém o processo corrosivo em atividade.^{60,61}

Este tipo de corrosão normalmente ocorre em materiais metálicos passivos que estejam expostos a íons cloreto, sendo os principais exemplos as ligas de alumínio e os aços inoxidáveis.^{60,61} No entanto, para o cobre e suas ligas o íon cloreto não é o único íon que pode promover o processo de corrosão por pite: os íons de sulfato e sulfeto também são apresentados pela literatura.^{62,63} Outro fato importante com relação a corrosão por pite de cobre e suas ligas, na presença dos íons cloreto, é que este processo só ocorre quando as concentrações são baixas, conforme ilustra a Fig. 3.4.1,⁶⁴ pois em concentrações elevadas ocorre a formação mais acentuada de produtos e a corrosão passa a ser generalizada. A formação dos pites no cobre e suas ligas também pode estar associada com outros mecanismos, como por exemplo, a presença de carepas descontínuas, corrosão-erosão e corrosão seletiva.⁶⁵

Figura 3.4.1: Número de pites produzidos na superfície do cobre em várias concentrações de NaCl.⁶⁴

Alguns autores⁶³ ainda apresentam uma classificação dos pites que ocorrem no cobre, que estão diretamente relacionados com a qualidade da água. Os pites são classificados em tipo I, tipo II, tipo III e em pites não associados a produtos de corrosão.⁶⁴ O primeiro tipo normalmente ocorre em águas frias com valores de pH entre 7,0 e 7,8, e é caracterizado por apresentar uma forma hemisférica, que contém produtos de cloreto cuproso (CuCl), que são recobertos de malaquita (Cu₂CO₃(OH)₂). Este tipo de pite normalmente ocorre quando a camada protetora de cuprita (Cu₂O) não se forma de maneira uniforme e compacta, devido à ação de partículas, que ajudam a quebrar a película protetora. Outro fator importante para ocorrência deste tipo de pite é a presença de resíduos de carbono, que muitas vezes são decorrentes dos tratamentos térmicos realizados nos tubos. A Fig. 3.4.2 mostra uma representação esquemática da região do pite, que é dividida em duas regiões, uma acima e outra abaixo da película de Cu₂O. A região I apresenta os produtos de expansão dos produtos de corrosão.

O tipo II ocorre em águas com temperaturas acima de 60°C, e são pites mais profundos e estreitos (furos finos em forma de agulha), que são cobertos basicamente por *brochantite* (Cu₄SO₄(OH)₆). A ocorrência deste tipo de corrosão é mais acentuada quando o valor de pH for inferior a 7,0 e quando a razão $[HCO_3^{--}] / [SO_4^{--}]$ for menor que um. O tipo III ocorre em águas frias e águas doces com pH acima de 8,0, e o pite tende a ser largo e raso.

Figura 3.4.2: Representação esquemática das camadas que revestem a superfície corroída.⁶³

Com relação aos mecanismos propostos para a corrosão por pite, existem basicamente dois pontos de vista, quando se trata de pites do tipo I. A partir disso May apud Lucey⁶⁶ propôs que o processo anódico consiste na dissolução do cobre formando cloreto cuproso (CuCl) que posteriormente sofre hidrólise resultando em óxido cuproso (Cu₂O) e ácido clorídrico (HCl). No processo catódico proposto por May a redução do oxigênio dissolvido na solução resulta em íons hidroxila (OH⁻) em uma grande área ao redor do pite, que faz com que o pH da solução nesta região aumente. A validade deste mecanismo exige a exposição de Cu^o metálico. Isto gera uma complicação, pois a membrana de Cu₂O já foi verificada em vários trabalhos da literatura, ou seja, cobre metálico normalmente não está exposto diretamente ao eletrólito. Por sua vez, May apud Lucey⁶⁶ menciona no mesmo trabalho a característica da membrana de Cu₂O permitir a difusão de íons de cloreto. Isso permite a proposta de outro mecanismo, onde primeiramente, tem-se a difusão de Cl⁻ através da membrana de Cu₂O, até atingir-se a interface membrana/Cu, reagindo e formando cristais de CuCl através da reação:

 $Cu^{\circ} + Cl^{\cdot} \rightarrow CuCl + e^{\cdot}$

Os elétrons formados são conduzidos à superfície onde são consumidos por O₂, originando OH⁻ que aumenta o pH local. Por sua vez, o aumento leva o sistema à região de estabilidade do CuO (ver Fig. 3.2.4). A formação de CuO depende da produção de íons Cu²⁺ a partir de íons de Cu⁺ da membrana, segundo a reação anódica:

 $Cu^{\scriptscriptstyle +} \rightarrow Cu^{\scriptscriptstyle 2+} + e^{\scriptscriptstyle -}$

Na presença de O_2 os elétrons aqui formados também reagem formando OH^- e consumindo mais Cu^+ , com formação de mais Cu^{2+} , com possível formação de hidróxidos de cobre. Tal raciocínio mostra que a presença de cloreto é importante na nucleação do processo e não no crescimento dos pites. Assim para que ocorra o crescimento de um pite no cobre faz-se necessário a formação de uma membrana porosa e condutora (Fig. 3.4.3), que normalmente será composta de óxidos cuprosos pseudoamorfos formados na superfície original do cobre. Entre a membrana e a superfície do cobre deverá ser estabelecido um bolso de eletrólito com uma concentração elevada de íons cuprosos. Esta condição faz com que a membrana se comporte como um eletrodo bipolar, onde a oxidação ocorre na face mais próxima do cobre, e redução na face em contato com o eletrólito. Os íons cuprosos são difundidos para fora da membrana em contato com a água e são oxidados para

cúprico. Alguns são precipitados como sais insolúveis, mas outros são reduzidos novamente para cuprosos na superfície da membrana e ficam disponíveis para repetir o ciclo de oxidação-redução. Uma reação anódica correspondente acontece na superfície interna, na qual os íons cuprosos dentro do bolso são oxidados para cúprico. A força motriz que mantém as reações anódicas e catódicas é provida pela diferença de concentração de íons cuprosos entre os dois lados da membrana de óxido.⁶⁶ O aumento do CuCl e do Cu₂O formados entre a matriz metálica e a membrana podem levar ao rompimento desta, cessando as reações catódicas e anódicas e o crescimento do pite, o que explica a observação, na maior parte dos casos, de pites rasos e largos (tipos I e II).

Figura 3.4.3: Esquema do mecanismo da membrana bipolar.⁶⁶

3.5 EROSÃO

3.5.1 Mecanismos de Erosão

A maioria dos conhecimentos sobre os mecanismos de erosão foram originados do estudo do impacto de uma única partícula, pois o impacto de várias partículas envolvem fenômenos complexos, como uma faixa extensa de ângulos de impacto,

interações entre as partículas, o embutimento das partículas, entre outras ocorrências. Vários mecanismos foram propostos para explicar o desgaste causado pela erosão.⁶⁷ Finnie⁶⁸ propôs um dos primeiros modelos de erosão para estudar o comportamento de metais dúcteis que é baseado no corte da superfície causado pelo efeito das partículas duras. As principais variáveis envolvidas no modelo com relação à partícula foram: velocidade, dureza, massa, resistência e ângulo de impacto, enquanto para o material foi considerado apenas o limite de escoamento. Em trabalhos posteriores⁶⁹ foi considerada também a influência de outras variáveis, que foram divididas em três grupos. O primeiro grupo apresenta as variáveis governadas pelo fluxo, como ângulo de impacto, velocidade das partículas, rotação das partículas e concentração das partículas. O segundo grupo é relacionado com as propriedades das partículas, tamanho, dureza, resistência, forma e friabilidade. Já o terceiro está relacionado com as propriedades da superfície, forma, nível de tensão, dureza e as propriedades mecânicas do material. Bitter⁷⁰ discute o processo de erosão onde o impacto das partículas provoca a formação de trincas devido ao encruamento da superfície. O golpeamento das partículas duras sobre a superfície provoca o encruamento destas regiões, o que acaba diminuindo a capacidade de deformação, assim o processo de fratura frágil ocorre após choques consecutivos nos mesmos locais ou em suas proximidades.

Tilly⁷¹ apresentou o conceito de segundo estágio do processo erosivo, que é basicamente uma segunda etapa do processo de corte, onde os fragmentos das partículas que se chocaram pela primeira vez e formaram lábios nas extremidades das crateras, realizam um segundo processo de corte ao se movimentarem tangencialmente sobre a superfície. Este modelo mostrou a importância de estudar as propriedades das partículas. Winter e Hutchings⁷² estudaram o conceito que leva em consideração a remoção dos lábios formados pelos impactos de outras partículas. Estes propuseram que a separação dos lábios formados nas extremidades das crateras ocorre ao longo das bandas de cisalhamento, que são formadas das superfícies próximas dos lábios. O aumento da tensão nesta região ainda provoca uma elevação local de temperatura devido à deformação plástica, que por consequência pode causar alterações na microestrutura do material no local. Existem também evidências das forças adesivas entre o impacto e a formação dos lábios, que são formados, mas não são destacados pela ação de uma única
partícula. A remoção pode acontecer em situações de múltiplos impactos, que ocorrem através das partículas subsequentes. A fragmentação das partículas devido ao impacto também pode ajudar neste processo de remoção dos lábios.

Os processos de erosão conduzidos por um único ou por múltiplos impactos de partículas podem ser observados através da Fig. 3.5.1. Partículas angulares podem remover o material através de microcortes (microcutting) e/ou microsulcos (microploughing) (Fig. 3.5.1a) quando estas golpeiam a superfície em ângulos pequenos, abaixo de 40°. Estes processos podem ser sobrepostos pelo efeito da temperatura, devido às altas energias de impacto e as forças de fricção induzidas entre as partículas e a superfície. O processo de quebra (Fig. 3.5.1b) da superfície se torna importante conforme o ângulo de impacto cresce, e quando o tamanho da partícula, a velocidade da partícula e/ou aumento da fragilidade do material aumentam. As taxas de erosão podem ser substancialmente mais sensíveis ao tamanho da partícula para materiais frágeis do que para os materiais dúcteis. Estas taxas também têm uma relação proporcional à velocidade no caso dos materiais dúcteis. Os lábios nos materiais (Fig. 3.5.1c) podem ser produzidos através de um impacto oblíquo, e estes lábios são destacados ao longo das bandas de cisalhamento. O repetido carregamento por impactos de múltiplas partículas promovem a formação de superfícies ou sub-superfícies que quebram, e acabam formando escamas devido à fragmentação causada pelo processo de desgaste (Fig. 3.5.1d). A formação de finas plaquetas é favorecida por múltiplos impactos de partículas arredondadas e altos ângulos de incidência (Fig. 3.5.1e e Fig. 3.5.1f). Na prática, estes processos podem acontecer simultaneamente, dependendo das condições operacionais e dos materiais utilizados.67

Figura 3.5.1: Processos resultantes da erosão causada por um único ou por múltiplos impactos de partículas. (a) microcorte e/ou microsulco. (b) quebra da superficie (*microcraking*). (c) extrusão do material da cratera devido ao impacto. (d) trincamento por fadiga da superfície ou sub-superfície devido a impactos repetidos. (e) formação de plaquetas finas devido à extrusão e ao forjamento causado pelos impactos repetidos. (f) formação de plaquetas devido à interação do processo de extrusão.⁶⁷

3.5.2 Variáveis que Afetam a Erosão

A seguir estão apresentados alguns parâmetros operacionais que influenciam a erosão de materiais dúcteis.

Tempo de exposição

Normalmente a taxa de erosão é definida como o volume ou perda de massa do material dividida pelo tempo de exposição. As principais curvas de taxa de erosão por tempo de exposição podem ser observadas na Fig. 3.5.2. De acordo com a curva 1 da Fig. 3.5.2 existe um período de incubação que é seguido de um período de aceleração até que se estabeleça um patamar fixo ou ocorre uma desaceleração,

gerando a curva 2. A curva 3 da Fig. 3.5.2 começa com uma taxa negativa de erosão, devido ao ganho de massa causado pela incrustação das partículas. Esta incrustação ocorre predominantemente em ângulos maiores de impacto. A dependência da taxa de erosão em relação ao ângulo de impacto é influenciada pelo tamanho das partículas, a velocidade de impacto e pelo material ensaiado.⁶⁷

Figura 3.5.2: Representação esquemática da taxa de erosão em função do tempo de exposição.⁶⁷

Dureza do material e microestrutura do material

Alguns estudos apresentam a existência de uma relação linear entre a dureza e a resistência ao desgaste, para ângulos de ataque pequenos. Tal fato pode ser observado através da Fig. 3.5.3 que apresenta esta relação para alguns metais, onde pode-se ver ainda que o mesmo material tem resistência diferente em função do ângulo de ataque. Existem também evidências que metais puros recozidos de estrutura CFC exibem uma resistência mais elevada à erosão do que os metais com estrutura CCC. Isto é, as mudanças microestruturais, associadas com o tipo de estrutura cristalina, podem causar alterações na relação dureza/resistência ao desgaste.⁶⁷

Figura 3.5.3: Representação esquemática da resistência à erosão para ângulos de impacto entre 10 e 20°(a) e 90° (b) versus dureza de diferentes materiais. Erosão com partículas de quartzo de 0,4 a 0,6 mm, com velocidade de 82 m/s para os metais puros, e partículas de carbeto de silício de 0,6 a 1,0 mm, com velocidade de 30 m/s para os aços.⁶⁷

Ângulo de impacto

A microestrutura do material é fator preponderante na relação dureza/resistência ao desgaste, conforme pode ser observado na Fig. 3.5.4, que apresenta a resistência à erosão de um aço AISI-SAE 1078 em diferentes condições de tratamento térmico, para diferentes ângulos de ataque. Outro fator que deve ser levado em consideração nos resultados apresentados na Fig. 3.5.4 é a tenacidade do material: a estrutura martensítica, apesar de mais dura que as demais apresentadas, não é tão tenaz, e com o aumento do ângulo de impacto não é mais capaz de absorver a energia, aumentando a taxa de erosão. Estes resultados podem ser observados na Fig. 3.5.4 que apresenta o aço AISI-SAE 1078 em diferentes condições de tratamento térmico, para diferentes ângulos de ataque. Para ângulos menores que 30° não se observa diferenças significativas entre os resultados, independente da dureza promovida pelo tratamento térmico. Já para os ângulos maiores que 45° verifica-se a alteração da taxa de erosão em função da dureza, para os materiais com estrutura

martensitica onde ocorre um aumento, enquanto os demais sofrem uma redução, provavelmente devido à incrustação de partículas. Nos ângulos de incidência normal (90°) observa-se uma diferença entre os materiais com maior dureza (martensita e martensita revenida) que pode estar associada à diferença de ductilidade entre estes materiais.

Figura 3.5.4: Taxa de erosão para diferentes estruturas do aço ASIS-SAE 1078, em função do ângulo de impacto. Ensaio realizado com partículas com 240 mesh, com velocidade 99 m/s.⁶⁷

Um dos fatores importantes que influenciam na geometria da deformação causada pelo impacto de partículas é o ângulo de impacto. Este ângulo é usualmente definido como um ângulo relativo entre a incidência da partícula e a superfície, conforme ilustrado na Fig. 3.5.5. A Fig. 3.5.5 também ilustra que no caso dos metais dúcteis, onde normalmente prevalecem a deformação plástica e os cortes, existe uma forte dependência do ângulo de impacto, onde as maiores taxas de erosão ocorrem entre 10 e 20°. Já para os materiais frágeis as maiores taxas de erosão são obtidas para incidência normal das partículas.^{69,73,74}

Figura 3.5.5: Comportamento típico de materiais dúcteis e frágeis das taxas de erosão em relação ao ângulo de impacto.⁷³

Velocidade das partículas

Uma tendência que é observada com relação à taxa de erosão, para um determinado ângulo, é que esta cresce com o aumento da velocidade da partícula. A velocidade de impacto pode influenciar a taxa de erosão por causa do efeito da energia de impacto. A Fig. 3.5.6 mostra que a energia de impacto mínima para o começo da erosão é maior em um material frágil do que no dúctil. Porém, a taxa de erosão aumenta mais rapidamente com o aumento da velocidade para os materiais frágeis.⁷¹ Por outro lado, o crescente aumento da velocidade de impacto pode promover um comportamento frágil nos materiais dúcteis.⁶⁷ A taxa de desgaste normalmente é expressa por:

$$\mathsf{E} = \mathsf{K}.\mathsf{v}^{\mathsf{n}} \tag{eq. 3.5}.$$

onde E é a taxa de desgaste, v é a velocidade da partícula e n é um expoente que pode variar entre 2 e 2,5 para os metais.⁵⁴

1)

Figura 3.5.6: Representação esquemática da taxa de erosão em função da velocidade da partícula. Ângulo de impacto: 90°.⁶⁷

Forma da partícula

A maioria das partículas responsáveis pelo desgaste erosivo são aparentemente angulares, no entanto, podem haver variações consideráveis na sua forma. Diferenças entre as formas das partículas podem resultar em taxas de desgaste que podem ser multiplicadas por um fator de dez ou mais, contudo a angularidade das partículas abrasivas raramente é quantitativamente medida. A angularidade das partículas é um fator difícil de definir, devido à dificuldade de identificar e quantificar as características tridimensionais complexas da partícula, que são responsáveis pelo desgaste abrasivo.^{75,76}

Tamanho das partículas

O efeito do tamanho da partícula sobre a taxa de erosão é apresentado na Fig. 3.5.7. O aumento do tamanho da partícula aumentaria a energia de impacto, o que acaba provocando um aumento na taxa de desgaste. No entanto, este efeito é menos intenso quando a partícula supera um valor limite, que no caso dos metais encontra-se por volta de 100 μ m. Através da Fig. 3.5.7 pode se observar esta

mudança de comportamento, já que a partir de 100 μ m a taxa de desgaste por erosão fica praticamente linear.^{67,75}

Figura 3.5.7: Taxa de desgaste (erosão) do cobre, com partículas de carbeto de silício com diferentes tamanhos. Velocidade do ensaio: 120 mm/s.⁷⁵

Dureza da partícula

O aumento da dureza dos abrasivos promove maiores taxas de desgaste, independente da velocidade e do ângulo de impacto. No entanto, quando se trata de abrasivos com durezas muito superiores à dureza superficial do material, estas diferenças não são significativas, mesmo que entre abrasivos exista uma grande diferença de dureza, conforme ilustra a Fig. 3.5.8. Para os resultados observados foi proposta uma relação entre a dureza de material e a do abrasivo (H/H_a), onde se a relação for menor que 0,8 a taxa de erosão é constante e se a relação for maior que 1,2 a taxa será muito pequena.⁷⁵

Figura 3.5.8: Dependência do desgaste erosivo em relação à dureza do abrasivo para o aço C60H.⁷⁵

3.6 CORROSÃO-EROSÃO

A corrosão-erosão é definida pela norma ASTM G40-93⁷⁷ como sendo um conjunto de ações envolvendo erosão na presença de uma substância corrosiva. Em geral, a velocidade relativa do meio em relação ao metal é muito alta, ocorrendo, no processo corrosivo, uma ação mecânica de desgaste. Assim, pode-se entender que existem dois processos de erosão, sendo um puramente mecânico, e outro processo associado à corrosão. No primeiro caso, o movimento relativo do metal/meio determina o arrancamento de partículas metálicas e, no segundo, o metal é removido na forma de íons metálicos de produtos da corrosão sólidos que são arrancados da superfície metálica. A Fig. 3.6.1 ilustra o processo de corrosão-erosão em um tubo.

Fluxo de água Superfície original Produto de corrosão Região atacada

Figura 3.6.1: Corrosão-erosão em um tubo.78

No caso da remoção de íons metálicos, tem-se uma aceleração da taxa de corrosão generalizada do metal. Isto significa que o metal apresenta corrosão mesmo na ausência de movimento do líquido. No entanto, esta corrosão é significativamente acelerada pelo movimento relativo metal/meio.^{79,80}

A corrosão-erosão pode ser consequência de forças impostas pela própria turbulência do líquido em movimento, e devido a presença de partículas e/ou existência de gases no líquido em movimento. No caso da corrosão-erosão ser consequência do colapso de bolhas de gás presente no líquido, recebe a denominação cavitação. Em geral, neste tipo de corrosão há formação de pites alongados na direção do movimento do líquido.^{79,80}

A natureza dos produtos de corrosão formados sobre a superfície metálica em contato com o meio é de fundamental importância na resistência à corrosão-erosão. A eficiência do caráter protetor destes produtos é função da dureza, continuidade, aderência, facilidade e velocidade de formação da camada de produtos da corrosão.

O cobre e suas ligas, em geral, são suscetíveis à corrosão-erosão e corrosãocavitação, pois são metais que apresentam dureza relativamente baixa. Entretanto, as ligas de cobre com alto teor de alumínio como as ligas de latão-alumínio e bronze-alumínio são mais resistentes, devido à formação de óxido de alumínio (Al₂O₃) na superfície, em conjunto com os produtos de corrosão do cobre, o que torna a barreira protetora mais eficiente. Em muitos casos, consegue-se um aumento da resistência à corrosão-erosão através da adição de um terceiro elemento. As ligas cobre-níquel, especialmente as que contêm pequenas adições de ferro, são mais resistentes a este tipo de corrosão.^{2,3,79,80} O efeito do ferro na resistência à corrosão-erosão, que pode ser visto na Fig. 3.6.2, se deve à maior estabilidade da camada de produtos de corrosão, formada na presença do terceiro elemento.⁸⁰ Vale ressaltar aqui que o efeito benéfico observado na Fig. 3.6.2 devido a adição de ferro coincide com a solubilidade do ferro na liga, conforme apresentado na Fig. 1.1. Além do efeito de estabilizar a camada de produto de corrosão, o Fe aumenta a dureza por solução sólida, o que aumenta a resistência a erosão.

Figura 3.6.2: Efeito da adição de ferro na resistência à corrosão-erosão da liga cuproníquel 90-10 em água do mar, em um teste realizado por 30 dias, para uma velocidade de 3 m/s.⁸⁰

3.6.1 Sinergismo Corrosão-Erosão

Os mecanismos de erosão e corrosão podem envolver vários processos mecânicos, químicos e eletroquímicos, que quando combinados podem resultar em uma interação que vai além da contribuição individual da erosão e da corrosão. A interação abrasão. atrito, impacto e corrosão pode entre а aumentar significativamente as perdas do material dentro dos ambientes aguosos, resultando no fenômeno chamado de sinergismo positivo corrosão-erosão. Um exemplo prático pode ser o aco inoxidável, que tem uma resistência à corrosão na ausência de abrasão mecânica, mas na presença do efeito erosivo esta resistência diminui devido à remoção do filme passivo. Assim, o entendimento deste efeito sinergético pode ajudar a compreender o processo de corrosão-erosão, isto é, conhecer os mecanismos atuantes e que acabam controlando o processo de dano no material.⁸¹ Para tanto, é importante entender os efeitos causados pelo efeito erosivo sobre a superfície do material e também os processos de corrosão atuantes no meio aquoso, além do efeito das propriedades do material.

A criação de modelos para os processos de corrosão-erosão é difícil devido ao grande número de variáveis envolvidas. Assim uma das alternativas para entender os regimes e os mecanismos envolvidos no processo de corrosão-erosão são os

mapas de desgaste.^{82,83} Dentre os processos de interação entre corrosão e erosão, podem ocorrer vários fenômenos com intensidades diferentes dependendo da interação ser positiva ou negativa, entre corrosão e erosão. Estas variações dos fenômenos podem ser decorrentes da alteração da película passiva devido ao fluxo do eletrólito, onde o processo de dissolução é dominante, até situações onde o efeito cortante ou a fratura da superfície são introduzidos pelo impacto das partículas. Estas variações nas interações dos processos são apresentadas na Tab. 3.6.1, que apresenta uma divisão entre o domínio da dissolução e da ação mecânica.⁸⁴

Tabela 3.6.1: Espectro dos processos de corrosão-erosão⁸⁴

Domínio da dissolução

- O fluxo afina a película passiva e a corrosão é controlada por transferência de massa e a cinética de crescimento da película.

- A taxa de corrosão-erosão é controlada pela dissolução da película passiva.

- A película passiva é localmente removida através de dissolução, o fluido introduz tensão devido ao impacto das partículas, podendo ocorrer repassivação. A taxa de corrosão-erosão é controlada pela frequência da remoção do filme e a taxa de dissolução e subsequente repassivação do metal.

- A película passiva é removida e não há repassivação. A taxa de corrosão-erosão é controlada pela dissolução do metal base.

- A película passiva é removida, o metal base sofre danos mecânicos e a taxa de corrosão-erosão é a soma da dissolução mais o dano mecânico, mais o possível sinergismo.

- A película passiva é removida e o dano mecânico do metal é o mecanismo dominante.

Domínio do dano mecânico

4 MATERIAIS E MÉTODOS

Neste capítulo estão apresentados os materiais, as técnicas e os parâmetros experimentais utilizados para atingir os objetivos propostos.

A liga utilizada neste estudo foi elaborada, trabalhada e tratada termicamente especialmente para este trabalho. A avaliação da resistência à corrosão e a corrosão-erosão foram realizadas através de ensaios de polarização eletroquímica. As propriedades mecânicas foram determinadas através de ensaios de tração e medidas de microdureza. A execução dos ensaios de corrosão-erosão só foi possível após a confecção de um equipamento que permitisse a aplicação de potencial elétrico através de um potenciostato simultaneamente com a agitação do eletrólito com ou sem partículas (material abrasivo).

A produção das ligas, os ensaios e as análises das amostras foram realizados nos seguintes laboratórios:

- Laboratório de Processos Eletroquímicos do Departamento de Engenharia Metalúrgica e de Materiais da EPUSP (LPE/PMT);
- Laboratório de Microscopia Eletrônica e de Força Atômica do Departamento de Engenharia Metalúrgica e de Materiais da EPUSP (LabMicro/PMT);
- Laboratório de Caracterização Microestrutural "Hubertus Colpaert" do Departamento de Engenharia Metalúrgica e de Materiais da EPUSP (LCMHC/PMT);
- Centro de Desenvolvimento de Materiais Metálicos do Centro Universitário da FEI (CDMatM-FEI).

4.1 ELABORAÇÃO DA LIGA

A liga foi produzida em um forno tipo mufla pertencente ao CDMatM-FEI, à temperatura de 1.400°C. A fusão ocorreu a partir de cobre, níquel, alumínio e ferro eletrolíticos. Estas matérias-primas, nas formas de lentilha (cobre), pó (níquel e

ferro) e limalha (alumínio), foram misturadas e compactadas como briquetes cilíndricos, de aproximadamente 40 g cada. Foram utilizados cadinhos de grafita (tipo CAF 4 do fabricante Morganite), com aproximadamente 300 ml de capacidade. O metal líquido foi vazado em casca de *shell molding*.

A liga obtida foi analisada por espectroscopia de emissão atômica (plasma acoplado indutivamente), e os resultados de composição química estão apresentados na Tab. 4.1.1.

Tabela 4.1.1: Composição química (% em massa) da liga em estudo (Instituto de Pesquisas e Estudos Industriais – IPEI-FEI).

Cu	Ni	AI	Fe
bal.	10,74	3,16	1,34

4.2 TRATAMENTOS TÉRMICOS E PROCESSAMENTO DA LIGA^{*}

O lingote bruto de fusão sofreu tratamento térmico de solubilização em um forno tubular *Lindberg* (com variação máxima de temperatura de $\pm 2^{\circ}$ C), a 900°C por 3 horas, sob atmosfera de nitrogênio puro (99,99% N₂), para evitar oxidação excessiva da superfície, seguido de resfriamento em água. A seguir, o lingote teve suas faces lixadas até obtenção de uma superfície isenta de óxidos e porosidades, sofrendo laminação a frio, com redução média de 90% da área da seção transversal do lingote, obtendo-se uma chapa de aproximadamente 2 mm de espessura, 60 mm de largura e 1.800 mm de comprimento. A chapa laminada foi cortada em corpos-deprova de aproximadamente 20 mm de largura e 150 mm de comprimento, para em seguida ser tratada termicamente a 900°C por uma hora, com a mesma atmosfera e mesmo resfriamento do tratamento térmico de solubilização, para garantir que todos os corpos-de-prova apresentassem apenas fase α (CFC). A partir das chapas solubilizadas foram retiradas amostras para os tratamento de solubilização e sob

[•] Os procedimentos de fusão, tratamentos térmicos, laminação e confecção dos corpos-de-prova foram realizados no Centro de Desenvolvimento de Materiais Metálicos do Centro Universitário da FEI (CDMatM-FEI).

atmosfera de nitrogênio puro (99,99% N₂). Os tratamentos de envelhecimento tiveram como objetivo promover o envelhecimento por precipitação.

4.3 PREPARAÇÃO DOS CORPOS-DE-PROVA[‡]

A partir das chapas laminadas e tratadas, foram usinados corpos-de-prova para realização de ensaios de tração, que tiveram todas as faces lixadas até a condição superficial de 600 *mesh* (Fig. 4.3.1). O sentido do comprimento do corpo-de-prova corresponde à direção do comprimento da chapa original (direção de laminação).

Figura 4.3.1: (a) Corpo-de-prova de tração. (b) Dimensões do corpo-de-prova de tração, em mm.

Foram também retiradas amostras para a confecção dos corpos-de-prova para:

- Ensaios de corrosão (ensaios de polarização potenciodinâmica);
- Ensaios de corrosão-erosão assistidos por polarização;
- Ensaios de corrosão-erosão sem aplicação de polarização (perda de massa).

Em particular, as amostras preparadas para os ensaios de corrosão (polarização potenciodinâmica) tiveram todas as suas faces lixadas até a obtenção de superfície com acabamento conferido por lixa de granulação 1.200 *mesh*, permitindo boa adesão à resina de embutimento, com o intuito de evitar corrosão localizada na interface metal/resina. As amostras foram embutidas em resina termofixa de cura a quente (baquelite), gerando corpos-de-prova metalográficos com superfície de observação correspondente à seção transversal da chapa para os ensaios de corrosão (Fig. 4.3.2). A área

[‡] Os procedimentos de fusão, tratamentos térmicos, laminação e confecção dos corpos-de-prova foram realizados no Centro de Desenvolvimento de Materiais Metálicos do Centro Universitário da FEI (CDMatM-FEI).

exposta das amostras foi de 0,30 cm² (2 mm de largura e 15 mm comprimento) para os ensaios de corrosão, já para os ensaios de corrosão-erosão a área exposta foi de aproximadamente 0,99 cm² (9 mm de largura e 11 mm de comprimento). Após embutimento, as superfícies destes corpos-de-prova foram lixadas até 1.200 *mesh* e, em seguida, polidas utilizando pasta de diamante de 6, 3 e 1 μ m; foi utilizado como lubrificante durante as etapas de polimento álcool etílico hidratado.

Figura 4.3.2: Ilustração mostrando como foram retirados os corpos-de-prova utilizados nos ensaios de corrosão e corrosão e corrosão assistida por polarização.

As amostras não embutidas foram utilizadas nos ensaios de corrosão-erosão sem aplicação de potencial (em água destilada e 3,5% NaCl). Estas tiveram todas as faces lixadas até a obtenção de superfície com acabamento conferido por lixa de granulação 600 *mesh*, para em seguida ter a superfície de ensaio polida utilizando pastas de diamante de 6, 3 e 1 μ m. A superfície de ensaio correspondente à face da chapa foi de aproximadamente 3,2 cm² (20 mm de largura e 16 mm de comprimento).

4.4 METODOLOGIA DOS ENSAIOS

4.4.1 Caracterização Microestrutural

Para preparação dos corpos-de-prova metalográficos foi utilizada uma politriz automática (Struers ABRAMIN, Fig. 4.4.1, equipamento do CDMatM-FEI). As amostras sofreram lixamento até 1.200 mesh, para em seguida serem polidas com pastas de diamante de 6, 3 e 1 µm, utilizando como lubrificante das etapas de polimento álcool etílico hidratado. A seguir, foram polidas com uma solução composta por 96% de sílica coloidal (concentração 10%), 2% hidróxido de amônio (concentração 25%) e 2% de água oxigenada (concentração 3%). Utilizou-se para ataque metalográfico o reativo Grade 7, cuja composição é 25 ml de ácido clorídrico, 200 ml de água destilada e deionizada e 8 g de cloreto férrico. Para as amostras envelhecidas o reativo foi diluído com água destilada na proporção 1/1, valor este que foi obtido por tentativa e erro durante a realização dos ataques. Os ataques foram conduzidos por no máximo 15 s de imersão e interrompidos com água. A superfície de observação foi seca através da evaporação de álcool etílico absoluto, auxiliada por jato de ar quente. Após o ataque, as amostras novamente foram observadas em um microscópio LEICA DMLM (equipamento do CDMatM-FEI), com luz polarizada e prisma de contraste de fase por interferência (Nomarski) e em um microscópio eletrônico de varredura (MEV) PHILIPS modelo XL30 (equipamento do LabMicro/PMT).

Figura 4.4.1: Politriz automática utilizada para os procedimentos de lixamento e polimento dos corpos-de-prova empregados para caracterização microestrutural. Equipamento do CDMatM-FEI.

4.4.2 Medidas de Microdureza

As amostras foram submetidas a 30 medidas de microdureza Vickers em um Microdurômetro Shimadzu série HMV-2 (equipamento do CDMatM-FEI), com carga de 9,8 N (1 kgf). As medidas foram realizadas em amostras embutidas e polidas até pasta de diamante de 1 µm. A Fig. 4.4.2 apresenta uma montagem que demonstra a distribuição dos pontos, que teve o intuito de varrer toda a espessura da amostra, na seção transversal das chapas laminadas.

Figura 4.4.2: Distribuição dos pontos de microdureza realizados na secção transversal das amostras.

4.4.3 Ensaios de Tração

Os ensaios de tração foram realizados em uma máquina universal de ensaios MTS 810 de 250 kN de capacidade máxima, servo-controlada (Fig. 4.4.3, equipamento do CDMatM-FEI). Foram realizados ensaios uniaxiais de tração, onde se determinou a resistência mecânica (limite de escoamento e resistência) e a ductilidade (alongamento total em 25 mm) da liga nas diferentes condições de tratamento térmico. A força foi medida por célula de carga de 25 kN de leitura máxima, e o deslocamento foi medido por extensômetro, com comprimento inicial de 25 mm, até 0,75 mm de deslocamento. Deste ponto até a ruptura, o deslocamento foi medido com um LVDT (*Linear Variable Differential Transducer – transdutor linear variável diferencial*), com precisão de 0,0005 mm. O ensaio teve taxa de deformação de 0,35 %/min no período controlado por extensômetro, e no restante do ensaio, a velocidade de deslocamento foi de 15 mm/min. Adotaram-se marcas a cada 2,5 mm de distância no comprimento, para medida do alongamento total em 25 mm (AT²⁵),

segundo a norma NBR 6152. As marcas foram realizadas com o auxílio de um calibrador traçador de altura.

Figura 4.4.3: Máquina universal de ensaios MTS utilizada para os ensaios de tração. (equipamento do CDMatM-FEI).

4.4.4 Eletrólitos

Para o preparo dos eletrólitos utilizou-se reagentes padrão analítico e água destilada e deionizada. Mediu-se o pH de cada uma das soluções com um pHmetro DIGIMED modelo DM-21 (Fig. 4.4.4). Os eletrólitos utilizados neste estudo, e os respectivos valores de pH, estão apresentados na Tab. 4.4.1.

Figura 4.4.4: Aspecto do pHmetro de bancada DIGIMED, modelo DM-21 (equipamento do LPE/PMT).

Eletrólito	рН
0,01M NaCl	6,5
0,01M Na ₂ SO ₄	5,5
0,0001M Na ₂ S.9H ₂ O	9,6

Tabela 4.4.1: Valores de pH dos eletrólitos utilizados neste estudo.

4.4.5 Procedimentos para os Ensaios de Corrosão e Corrosão-Erosão com Emprego de Potenciostato

Para os ensaios de corrosão (polarização potenciodinâmica) e corrosão-erosão assistida por polarização foi utilizado um potenciostato PAR 273A da *Pricenton Applied Reserch* (equipamento do LPE/PMT), conectado a um microcomputador, e controlado pelo programa *Electrochemistry PowerSuite* do mesmo fabricante (Fig. 4.4.5). O contra-eletrodo consistia de um fio de platina de 1 mm de diâmetro e aproximadamente 350 mm de comprimento, enrolado em forma de uma espiral. Utilizou-se, como eletrodo de referência, o eletrodo de calomelano saturado (ECS), empregando-se um capilar de *Lüggin* contendo solução saturada de KCI.

4.4.5.1 Ensaios de Corrosão (Polarização Potenciodinâmica)

Os ensaios de corrosão através do levantamento de curvas de polarização potenciodinâmica foram realizados, para todos os eletrólitos, com o auxílio do equipamento da Fig. 4.4.5. O contato elétrico do corpo-de-prova embutido em resina foi feito através de uma haste de aço inoxidável rosqueada a este. Os corpos-de-prova foram polidos até a condição propiciada por pasta de diamante de 1 μ m. Antes dos ensaios, as amostras foram lavadas com água destilada e deionizada, e secas com álcool etílico e ar quente; em seguida, foram imersas em solução naturalmente aerada (Fig. 4.4.6). A célula eletroquímica foi preenchida com aproximadamente 700 ml do eletrólito, e mantida a temperatura de 25 ±2°C. A polarização teve início após 300 segundos de imersão, partindo de –300 mV abaixo do potencial de circuito aberto (E_{corr}) até atingir a densidade de corrente de 10⁻³ A/cm². Os ensaios foram realizados com velocidade de varredura de potencial de 1 mV/s. Ao final dos

ensaios, os corpos-de-prova foram lavados com água destilada e deionizada, e secos com álcool etílico absoluto e ar seco e quente. As superfícies das amostras ensaiadas foram examinadas em microscópio óptico (MO) e microscópio eletrônico de varredura (MEV). Os ensaios foram repetidos cinco vezes por amostra, para cada condição de ensaio.

Figura 4.4.5: Vista do equipamento utilizado para a realização dos ensaios eletroquímicos (LPE/PMT).

Figura 4.4.6: Detalhes da célula eletroquímica e do arranjo experimental utilizado no presente trabalho. (1) Eletrodo de calomelano saturado, (2) capilar de Lüggin, (3) eletrodo de trabalho, (4) contra-eletrodo de platina e (5) nível de eletrólito na célula eletroquímica.

4.4.5.2 Procedimentos para os Ensaios de Corrosão-Erosão Assistida por Polarização

Os ensaios de corrosão-erosão assistida por polarização foram realizados num equipamento especialmente confeccionado para este projeto acoplado ao potenciostato PAR 273A ao microcomputador que controla o ensaio através do *Electrochemistry PowerSuite* (Fig. 4.4.7). Basicamente trata-se de uma célula eletroquímica de 5 L de capacidade, onde o fluido contendo partículas é colocado em movimento por um disco, acionado por motor elétrico com controle de velocidade. O contra-eletrodo e o eletrodo de referência foram os mesmos dos ensaios de corrosão (polarização potenciodinâmica) e podem ser observados na Figura 4.4.8.

O contato elétrico do corpo-de-prova embutido em resina foi feito através de uma haste de aço inoxidável rosqueada que faz contato a um bloco de cobre que foi unido ao corpo-de-prova (Fig. 4.4.9). Os corpos-de-prova foram polidos até a condição propiciada por pasta de diamante de 1 μ m. Antes dos ensaios, as amostras foram lavadas com água destilada e deionizada, e secas com álcool etílico e ar quente; em seguida, foram imersas na célula de corrosão-erosão (Fig. 4.4.8). A célula foi preenchida com 4 L do eletrólito, e mantida a temperatura de 25 ±2°C.

Figura 4.4.7: Vista do equipamento utilizado para a realização dos ensaios de corrosão-erosão (LPE/PMT).

Figura 4.4.8: Detalhes da célula de corrosão-erosão utilizada no presente trabalho. (1) Eletrodo de trabalho, (2) capilar de Lüggin e eletrodo de calomelano saturado, (3) contra-eletrodo de platina (4) disco de agitação, (5) nível de eletrólito na célula eletroquímica.

Figura 4.4.9: Detalhes do corpo-de-prova utilizado nos ensaios de corrosão-erosão assistida por polarização. (1) Haste, (2) bloco de cobre (dimensões 10x10x10 mm), (3) eletrodo de trabalho.

A polarização teve início após 60 segundos de imersão, partindo de –10 mV abaixo do potencial de circuito aberto (E_{corr}), realizando uma varredura contínua, com término quando atingida a densidade de corrente anódica de 10⁻³ A/cm². A escolha de sobretensão catódica de 10 mV ao invés de 300 mV procurou minimizar o tempo onde o corpo-de-prova estaria submetido à erosão (pura) sem presença de corrosão a qual inicia em sobretensão 0 mV, por sua vez, os ensaios foram realizados com velocidade de varredura de potencial de 0,25 mV/s, e não 1 mV/s, para que se tivesse um intervalo de tempo significativo onde o processo de corrosão e erosão estivessem atuando simultaneamente. Tais condições (sobretensão e velocidade de varredura) foram escolhidas após alguns ensaios preliminares. No eletrólito utilizado foi acrescentado 10% em peso de Al₂O₃, com partículas de granulometria entre 150

e 200 μm. A velocidade do disco de agitação foi de 2.500 rpm, que proporcionou uma velocidade de impacto da partícula na amostra de 1 m/s. As velocidades foram determinadas através de simulações realizadas no *software* CFX ANSYS[®] (A simulações foram realizadas pelo Professor Doutor Edvaldo Ângelo do LABORATÓRIO DO GRUPO DE SIMULAÇÃO NUMÉRICA da Escola de Engenharia da Universidade Presbiteriana Mackenzie), conforme apresentado na Fig. 4.4.10.

(c)

Figura 4.4.10: Resultado das simulações realizadas no software CFX ANSYS[®]. (a) Perfil de velocidades obtidas para rotação de 2.500 rpm. (b) Vórtice formado devido à agitação do fluido.

O ângulo de impacto de utilizado foi de 15° entre a amostra e a partícula, já que segundo a literatura (Fig. 3.5.5), este é o ângulo que apresenta maior desgaste para materiais dúcteis. Este posicionamento foi possível com o auxílio dos dispositivos apresentados nas Fig. 4.4.11 e 4.4.12. Ao final dos ensaios, os corpos-de-prova foram lavados com água destilada e deionizada, e secos com álcool etílico absoluto e ar seco e quente. As superfícies das amostras ensaiadas foram caracterizadas por microscopia óptica (MO) e microscopia eletrônica de varredura (MEV). Os ensaios foram repetidos três vezes por amostra.

Figura 4.4.11: Detalhe do dispositivo da célula de corrosão-erosão utilizado para posicionar o porta-amostra nos ângulos de ataque desejados. (a) Detalhe do dispositivo na tampa da célula de corrosão-erosão, (b) ilustração do dispositivo e (c) desenho de topo do porta-amostra.

Figura 4.4.12: Porta-amostra utilizado para os ensaios de corrosão-erosão e dispositivo utilizado para manter o paralelismo entre a face da amostra e o pino guia que posiciona a amostra no dispositivo apresentado na Fig. 4.4.11.

4.4.6 Microscopia Óptica

Utilizou-se um microscópio óptico para os exames metalográficos e para caracterização das superfícies antes e após os ensaios de corrosão e corrosãoerosão. Os microscópios utilizados foram o LEICA DMLM do CDMatM-FEI e o Olympus XL60M do LCMHC/PMT.

4.4.7 Microscopia Eletrônica de Varredura

Utilizou-se um microscópio eletrônico de varredura marca PHILIPS (equipamento do LabMicro/PMT), modelo XL30, obtendo-se imagens de elétrons secundários para caracterização microestrutural e das superfícies das amostras após os ensaios eletroquímicos (corrosão e corrosão-erosão). Realizou-se análise semiquantitativa por espectroscopia de energia dispersiva de raios-X (EDS) para auxiliar a caracterização das áreas afetadas pela corrosão.

4.4.8 Difração de Raios-X

Espectroscopia de raios-X foi realizada na amostra envelhecida por 1.032 horas, na seção longitudinal das chapas, para a identificação das fases presentes. A radiação utilizada foi a Cu-Kα, com detector de EDS Oxford do IPEN.

4.5 MATERIAL EROSIVO UTILIZADO NOS ENSAIOS DE CORROSÃO-EROSÃO E EROSÃO

As partículas utilizadas nos ensaios de corrosão-erosão foram de alumina eletrofundida, que é um material quimicamente inerte e possui elevadas resistência e rigidez mecânicas (dureza de 1.710 HV e módulo de elasticidade de 385 GPa). A alumina foi obtida através da empresa Elfusa Geral de Eletrofusão Ltda com a especificação AL-R grão 80, e sofreu separação granulométrica, definindo-se a faixa de 150 a 250 µm para os ensaios. Para caracterização do material foram realizadas

análises de microscopia eletrônica de varredura, obtendo-se a morfologia típica das partículas através de imagens como as dadas na Fig. 4.5.1.

Aumento: 100x. Aumento: 250x. Figura 4.5.1: Morfologia da alumina AL-R grão 80.

5 RESULTADOS EXPERIMENTAIS

Após obtenção da chapa laminada e corte dos corpos-de-prova a liga foi tratada a 900°C por uma hora e, posteriormente, a 550°C por tempos de até 1.032 h.

Este capítulo apresenta os resultados obtidos, primeiramente, para as propriedades mecânicas da liga após estes tratamentos térmicos: microdureza e resistência à tração. Em seguida, apresentam-se as microestruturas e por fim os resultados relativos à resistência à corrosão e corrosão-erosão.

5.1 MEDIDAS DE MICRODUREZA

A partir dos valores médios de trinta medidas em escala Vickers (HV), com carga de 9,8 N (1 kgf) foi confeccionado o gráfico apresentado na Fig. 5.1.1, onde pode ser observada a curva de envelhecimento da liga Cu10Ni-3Al-1,3Fe tratada termicamente à temperatura de 550°C. Nota-se que o efeito endurecedor provocado pela precipitação já ocorre nos tratamentos de 15 min, mas o máximo valor de dureza foi atingido para tempo de tratamento de 16 h; a partir deste ponto verifica-se a diminuição da dureza, isto é, ocorre o superenvelhecimento da liga.

Cu10Ni-3Al-1,3Fe.

5.2 ENSAIOS DE TRAÇÃO

As curvas de tração das amostras da liga Cu10Ni-3Al-1,3Fe na condição solubilizada e nas condições envelhecidas por 2, 16 e 1.032 h são apresentadas na Fig. 5.2.1. Através destas curvas foi possível obter as propriedades mecânicas que estão apresentadas na Tab. 5.2.1, onde se observa que o efeito causado pelo envelhecimento é bastante significativo na resistência mecânica: o limite de escoamento (LE) e o limite de resistência (LR) apresentam o mesmo comportamento da microdureza, ou seja, aumento gradativo de valor com posterior diminuição; já o alongamento total em 25 mm (AT²⁵) tem comportamento inverso: inicialmente diminui para ao final apresentar um pequeno aumento.

Os dados obtidos das curvas de tração também permitiram a construção das curvas de tensão-deformação verdadeiras (σ , ϵ_p), que foram utilizadas para determinação dos valores dos coeficientes de resistência (H) e os expoentes de encruamento (n) da equação de Hollomon (eq. 5.2.1) em função do tempo de envelhecimento a 550°C.

$$\sigma = H.\varepsilon_p^n \qquad (eq. 5.2.1)$$

Os valores foram obtidos através do método gráfico (Fig. 5.2.2) e estão apresentados na Tab. 5.2.2. A Fig. 5.2.2 apresenta o método gráfico utilizado, para a curva da amostra solubilizada.

Figura 5.2.1: Curvas de tração da liga Cu10Ni-3Al-1,3Fe nas condições solubilizada e envelhecidas.

Tabela 5.2.1: Propriedades mecânicas da liga nas condições solubilizada e envelhecidas a 550°C. LE é o limite de escoamento, LR é o limite de resistência, AT²⁵ é o alongamento total em 25 mm.

Amostras	LE (MPa)	LR (MPa)	AT ²⁵ (%)
Solubilizada	139	351	36,5
2 h	451	680	13,0
16 h	534	735	12,6
1.032 h	304	526	21,4

Figura 5.2.2: Curva de tensão vs deformação verdadeira da amostra solubilizada abrangendo o trecho controlado pelo extensômetro. A curva azul é a curva experimental e a curva preta representa o ajuste estatístico para uma função exponencial.

Amostras	H (MPa)	n			
Solubilizada	381	0,178			
2 h	826	0,122			
16 h	937	0,094			
1.032 h	848	0,165			

Tabela 5.2.2: Coeficientes e expoentes da equação de Hollomon. H é o coeficiente de resistência e n é o expoente de encruamento.

A partir dos dados apresentados nas Tab. 5.2.1 e 5.2.2 foi construído o gráfico da Fig. 5.2.3, que mostra a evolução das propriedades mecânicas das amostras em estudo em função do tempo de envelhecimento.

Figura 5.2.3: Evolução das propriedades mecânicas (LE, LR, H, AT²⁵ e n) em função do tempo de envelhecimento a 550°C.

5.3 CARACTERIZAÇÃO MICROESTRUTURAL

5.3.1 Microscopia Óptica

As amostras, após polimento até a condição superficial proporcionada por pasta de diamante de 1 μm, foram atacadas com o reativo *Grade* 7 para revelar a microestrutura. As micrografias resultantes das amostras atacadas podem ser observadas na Fig. 5.3.1. A seção examinada foi a transversal da chapa laminada.

Através das micrografias, observa-se que a amostra solubilizada é formada por grãos equiaxiais e maclas, distribuídos de forma homogênea. Já nas micrografias das amostras envelhecidas é possível observar evidências de transformação de fase. Em várias regiões da superfície observa-se uma nova fase que nucleia a partir dos contornos de grão e cresce preferencialmente para o interior de um dos grãos. Com o aumento do tempo, nota-se o aumento da fração precipitada.

16 h

1.032 h

5.3.2 Microscopia Eletrônica de Varredura

Para auxiliar a caracterização da liga na condição envelhecida utilizou-se microscopia eletrônica de varredura (MEV), nas amostras com ataque. Estes exames podem ser observados nas Fig. 5.3.2 a 5.3.6, que apresentam as imagens de elétrons secundários das amostras envelhecidas por 15 min, 1, 2, 16 e 1.032 h.

As imagens apresentadas nas Fig. 5.3.2 a 5.3.6 novamente indicam uma precipitação a partir dos contornos com crescimento preferencial para o interior do grão. No entanto, através destas imagens pode-se observar que a transformação da fase matriz tem como produto um aglomerado, aparentemente, de duas fases, por vezes, com aspecto lamelar (Fig. 5.3.2), que lembra um processo de precipitação celular. Já a amostra supervenvelhecida (1.032 h) deixa evidente que a microestrutura apresentou coalescimento da fase inicialmente precipitada, e nota-se também a formação e coalescimento de precipitados intragranulares, cuja cinética de formação é mais lenta, considerando a maior facilidade de difusão de Ni e Al pelos contornos de grão.

Além das imagens, também foram realizadas análises semiquantitativas por espectroscopia de energia dispersiva de raios-X (EDS) nos precipitados. Os resultados não mostraram diferenças significativas de composição em relação à matriz para amostras envelhecidas por até 16 h, provavelmente devido ao volume de material que o feixe interage ("efeito gota"). No entanto, para amostra envelhecida por 1.032 h, foi observado que os precipitados coalescidos apresentavam uma relação de aproximadamente três átomos de níquel para um de alumínio.

Aumento: 5.000x.

Aumento: 10.000x.

Aumento: 20.000x. Figura 5.3.2: Imagens de elétrons secundários da condição envelhecida por 15 min. Ataque com reativo Grade 7.

Aumento: 5.000x.

Aumento: 10.000x.

Aumento: 20.000x. Figura 5.3.3: Imagens de elétrons secundários da condição envelhecida por 1 h. Ataque com reativo Grade 7.

Aumento: 5.000x.

Aumento: 10.000x.

Aumento: 20.000x. Figura 5.3.4: Imagens de elétrons secundários da condição envelhecida por 2 h. Ataque com reativo Grade 7.

Aumento: 5.000x.

Aumento: 10.000x.

Aumento: 20.000x. Figura 5.3.5: Imagens de elétrons secundários da condição envelhecida por 16 h. Ataque com reativo Grade 7.

Aumento: 5.000x.

Aumento: 10.000x.

Aumento: 20.000x. Figura 5.3.6: Imagens de elétrons secundários da condição envelhecida por 1.032 h. Ataque com reativo Grade 7.

5.3.3 Difração de Raios-X

Para caracterizar a fase precipitada, foi realizada difração de raios-X na amostra envelhecida por 1.032 h, que provavelmente é a que apresenta a maior fração de

fase precipitada, já que há indicações de coalescimento desta. O espectro obtido pode ser observado na Fig. 5.3.7. Nele, mostra-se que dois picos da fase Ni₃Al coincidem com os picos da fase α . O fato dos picos da fase α e da fase Ni₃Al serem coincidentes dificulta a caracterização. Outro ponto que reforça que a fase presente é a fase Ni₃Al, é o pico observado por volta do ângulo de 90° que apresenta uma intensidade superior ao que seria característico do cobre, esta intensidade mais elevada pode ser decorrente da presença da fase Ni₃Al que apresenta uma intensidade elevada para este ângulo. As demais fases possíveis estão representadas na Fig. 5.3.8. Examinando-se as Fig. 5.3.7 e 5.3.8 conclui-se que o espectro obtido aproxima-se da fase Ni₃Al. Mais exames seriam necessários para esta caracterização, no entanto, as informações da literatura¹⁰⁻¹² indicam a formação de Ni₃Al para esta liga, e neste trabalho assumir-se-á Ni₃Al como a fase formada no envelhecimento.

Figura 5.3.7: Espectro de difração de raios-X da condição envelhecida por 1.032 h, onde são também indicados os ângulos de máxima intensidade das fases α e Ni₃Al.

Figura 5.3.8: Espectro de difração de raios-X da condição envelhecida por 1.032 h, onde são apresentadas também três barras que indicam os ângulos de máxima intensidade das fases AlNi, AlCu₄ e Al₂Cu₃, de onde se conclui que nenhuma destas três fases está presente na amostra analisada.

5.4 ENSAIOS DE CORROSÃO

5.4.1 Ensaios Eletroquímicos em Solução 0,01M NaCl

As Fig. 5.4.1 e 5.4.2 mostram o comportamento à polarização potenciodinâmica da liga Cu10Ni-3Al-1,3Fe solubilizada e envelhecida por diferentes tempos. Foram levantadas pelo menos cinco curvas, que comprovam a reprodutibilidade de resultados.

Observando as curvas, nota-se que no trecho catódico há uma tendência da densidade de corrente aumentar com a sobretensão catódica sem, no entanto, definir claramente o trecho linear de Tafel. Nas sobretensões catódicas mais altas a densidade de corrente aumenta menos acentuadamente, lembrando a densidade de corrente limite, provavelmente associada à difusão de oxigênio dissolvido. No trecho anódico, primeiramente observa-se um comportamento passivo, com densidades de corrente da ordem de 10⁻⁶ A/cm². Após o trecho passivo, as amostras apresentam

um aumento brusco nos valores de densidade de corrente, caracterizando um potencial de quebra de passividade (Eq). Comparando-se os resultados das curvas de polarização, nota-se na Fig. 5.4.3 que o tratamento de envelhecimento aumenta o valor de Eq, fato este mais acentuado nas amostras envelhecidas por 2 e 1.032 h. Por outro lado, não se observou alteração do potencial de circuito aberto (E_{corr}) após tratamento de envelhecimento (ver Tab. 5.4.1).

Figura 5.4.1: Curva de polarização potenciodinâmica, em solução 0,01M NaCl. As setas indicam o potencial de circuito aberto (E_{corr}) e o potencial de quebra de passividade (Eq) da liga Cu10Ni-3Al-1,3Fe na condição solubilizada. Início da polarização: 300 mV abaixo do potencial de circuito aberto. Velocidade de varredura: 1 mV/s. Polarização iniciada após 300 segundos de imersão.

Após os ensaios de polarização potenciodinâmica as amostras foram observadas em microscópio óptico (MO), onde se verificou que todas as amostras apresentavam um processo de corrosão localizada (Fig. 5.4.4), mas que não gerou pite, conforme pode ser observado nas Fig. 5.4.5 a 5.4.8 obtidas através do microscópio eletrônico de varredura (MEV). Pode-se observar também que os ataques ocorreram de forma localizada, mas em diversas regiões distribuídas por toda a amostra (Fig. 5.4.9). As imagens de MEV permitem dizer ainda que o ataque nas amostras envelhecidas ocorreu na matriz. Estas imagens realizadas após os ensaios revelam também a presença dos precipitados misturados aos produtos; os precipitados são mais evidentes na amostra envelhecida por 1.032 h (Fig. 5.4.8).

Figura 5.4.2: Comparativo entre as curvas de polarização potenciodinâmica da liga nas condições solubilizada e envelhecidas, em solução 0,01M NaCl.

Figura 5.4.3: Efeito do tempo de envelhecimento sobre o potencial de quebra de passividade da liga Cu10Ni-3Al-1,3Fe. Para comparação, é apresentado o valor para a condição solubilizada.

Amostras	E _{corr} (mV _{ECS})	Eq (mV _{ECS})
Solubilizada	-107 ±10	69 ±10
2 h	-108 ±13	96 ±14
16 h	-100 ±8	80 ±6
1.032 h	-105 ±9	152 ±16

Tabela 5.4.1: Potenciais de circuito aberto (E_{corr}) e potenciais de quebra de passividade (Eq) da liga Cu10Ni-3Al-1,3Fe, nas condições solubilizada e envelhecida, em solução 0,01M NaCl.

As amostras foram também analisadas por espectroscopia de energia de raios-X (EDS, acoplado a um MEV), para auxiliar a caracterização dos produtos de corrosão apresentados na Fig. 5.4.4. Os resultados destas análises mostram que as regiões indicadas pelas setas na Fig. 5.4.4 apresentaram os menores teores de níquel encontrados nas amostras. A partir destes resultados pode-se dizer que dentro destas regiões ocorre um processo de corrosão seletiva do níquel, processo este que se inicia de forma localizada. Dentre as amostras em estudo, foi observado que existe uma diferença entre os teores de desniquelação para a condição solubilizada e após envelhecimento, conforme mostra a Tab. 5.4.2. Fora destas regiões (matriz) os teores de níquel foram praticamente os mesmos para as amostras solubilizada e envelhecidas, com valor de aproximadamente 10% de níquel.

As imagens obtidas através do microscópio eletrônico de varredura (MEV), também permitiram observar a presença de pequenas inclusões de grafita, que provavelmente vêm do cadinho de grafita utilizado no processo de fundição, conforme apresentado na seção 4.1. Convém ressaltar que não se notou interferência das inclusões de grafita nos resultados da polarização potenciodinâmica.

16 h

Figura 5.4.4: Aspecto das superfícies das amostras após ensaio de polarização potenciodinâmica, em solução 0,01M NaCI, com término ao ser atingido o valor de densidade de corrente de 10⁻³ A/cm². Aumento: 50x. As setas indicam as regiões que em análises posteriores de EDS mostraram os menores teores de níquel.

Aumento: 10.000x.

Aumento: 2.500x.

Aumento: 10.000x.

Figura 5.4.6: Imagens de elétrons secundários da liga na condição envelhecida por 2 h, a seta indica a mesma posição da Fig. 5.4.4.

Aumento: 2.500x.

Aumento: 10.000x.

Figura 5.4.7: Imagens de elétrons secundários da liga na condição envelhecida por 16 h, a seta indica a mesma posição da Fig. 5.4.4.

Aumento: 2.500x.

Aumento: 10.000x.

Figura 5.4.8: Imagens de elétrons secundários da liga na condição envelhecida por 1.032 h, a seta branca indica a mesma posição da Fig. 5.4.4. A seta amarela indica a inclusão de grafita.

1.032 h

Figura 5.4.9: Aspecto geral das superfícies dos corpos-de-prova após polarização potenciodinâmica, em solução 0,01M NaCl. As fotos apresentam toda a superfície dos corpos-de-prova.

Tabela 5.4.2: Resultados das análises por dispersão de energia das superfícies atacadas indicadas nas Fig. 5.4.4 pelas setas, em solução 0,01M NaCl, das condições solubilizada e envelhecidas.

Amostras	Região	Região Indicada		Matriz	
	Cu%	% Ni	Cu%	% Ni	
Solubilizada	88,3	8,9	86,5	10,1	
2 h	89,0	8,1	86,6	9,9	
16 h	90,1	7,4	87,1	9,9	
1.032 h	89,8	7,5	87,3	10,1	

Com o objetivo de examinar o início do processo de corrosão seletiva, foram realizados novos ensaios de polarização potenciodinâmica com término ao atingir a densidade de corrente de 10⁻⁴ A/cm². O aspecto das superfícies atacadas pode ser observado na Fig. 5.4.10. Os exames em MO reforçam as evidências de ataque localizado, mas sem a formação de pite, conforme pode ser observado nas imagens de MEV (Fig. 5.4.11).

16 h

1.032 h

Figura 5.4.10: Aspecto das superfícies das amostras após polarização potenciodinâmica, em solução 0,01M NaCl, com término ao ser atingido de 10⁻⁴ A/cm². Aumento: 50x.

Figura 5.4.11: Imagens de elétrons secundários na região atacada das amostras apresentadas na Fig. 5.4.10. A seta amarela indica uma inclusão de grafita.

5.4.2 Ensaios Eletroquímicos em Solução 0,01M Na₂SO₄

Analogamente à solução de 0,01M NaCl também foram levantadas curvas de polarização potenciodinâmica para a solução de 0,01 M Na₂SO₄. Aqui também foram levantadas cinco curvas para cada condição. Os resultados estão apresentados nas Fig. 5.4.12 (liga solubilizada) e 5.4.13 (liga na condição solubilizada e envelhecida por diferentes tempos).

Figura 5.4.13: Comparativo entre as curvas de polarização potenciodinâmica da liga nas condições solubilizada e envelhecidas, em solução 0,01M Na₂SO₄.

Observando as curvas, nota-se que no trecho catódico há uma tendência da densidade de corrente aumentar com o incremento da sobretensão. No trecho anódico, nota-se primeiramente um comportamento passivo, com densidades de corrente da ordem de 10⁻⁵ A/cm², que é maior que a densidade de corrente observada na solução de 0,01M NaCl. Após o trecho passivo, as amostras apresentam um aumento brusco dos valores de densidade de corrente, caracterizando um potencial de quebra de passividade (Eq). Este potencial lembra, inicialmente, o potencial de pite que indica que um metal passivo sofre uma quebra localizada da película passiva. Nota-se através da Fig. 5.4.14 que as amostras envelhecidas não apresentaram valores de Eq com diferenças significativas aos da amostra solubilizada, mas apresenta uma leve tendência a queda do Eq. O mesmo pode ser observado para os potenciais de circuito aberto (E_{corr}), conforme apresentado na Tab. 5.4.3; o comportamento do Eq é diferente do que foi observado na solução de 0,01M NaCl, onde os valores de Eq apresentam diferenças significativas entre os tempos de envelhecimento.

Figura 5.4.14: Efeito do tempo de envelhecimento sobre o potencial de quebra de passividade da liga Cu10Ni-3Al-1,3Fe. Para comparação, é apresentado o valor para a condição solubilizada.

Amostras	E _{corr} (mV _{ECS})	Eq (mV _{ECS})
Solubilizada	-81 ±8	134 ±30
2 h	-77 ±1	132 ±6
16 h	-75 ±6	127 ±18
1.032 h	-84 ±7	103 ±22

Tabela 5.4.3: Potenciais de corrosão (E_{corr}) e potenciais de quebra de passividade (Eq) da liga Cu10Ni-3Al-1,3Fe, nas condições solubilizada e em envelhecida, em solução 0,01M Na₂SO₄.

Após os ensaios as amostras foram examinadas em microscópio óptico (MO), onde se observou ataque localizado (Fig. 5.4.15), na forma de pequenas cavidades, que lembram pites. No entanto, estas cavidades não eram profundas. Com o intuito de verificar a evolução do processo de corrosão e facilitar a caracterização, foram levantadas novas curvas até atingir a densidade de corrente de 10⁻² A/cm². O exame em MO mostrou, então, a ocorrência de um ataque mais intenso (Fig. 5.4.16 a 5.4.19) de forma distribuída por toda a amostra (Fig. 5.4.20). As Fig. 5.4.16 a 5.4.19 também mostram que os ataques são quase metalográficos, o que indica que a corrosão neste caso é sensível a aspectos microestruturais.

As análises em microscópio eletrônico de varredura (MEV) mostraram que as cavidades são alongadas perpendicularmente à direção de laminação (Fig. 5.4.21 a 5.4.24). Nestas regiões ainda foram realizadas análises semiquantitativas por espectroscopia de energia dispersiva de raios-X (EDS), para auxiliar a caracterização das regiões das cavidades. As análises mostram que nas regiões próximas e dentro das cavidades não ocorreram alterações na composição química. Assim, o comportamento observado nas condições solubilizada e envelhecidas pode ser chamado de corrosão por pite. Um ponto de destaque, que pode ser observado nas imagens das Fig. 5.4.21 a 5.4.24, é o fato das cavidades passarem por mais de um grão e também pela região com precipitados.

Solubilizada

2 h

16 h

1.032 h

Figura 5.4.15: Aspecto das superfícies das amostras após ensaio de polarização potenciodinâmica, em solução 0,01M Na₂SO₄, com término ao ser atingido o valor de 10⁻³ A/cm². Aumento: 50x.

Figura 5.4.16: Aspecto da superfície da liga na condição solubilizada após ensaio de polarização potenciodinâmica, em solução $0,01M \text{ Na}_2\text{SO}_4$, com término ao ser atingido o valor de 10^{-2} A/cm^2 . Aumento: 50x.

Figura 5.4.17: Aspecto da superfície da liga na condição envelhecida por 2 h após ensaio de polarização potenciodinâmica, em solução 0,01M Na₂SO₄, com término ao ser atingido o valor de 10⁻² A/cm². Aumento: 50x.

Figura 5.4.18: Aspecto da superfície da liga na condição envelhecida por 16 h após ensaio de polarização potenciodinâmica, em solução $0,01M \text{ Na}_2\text{SO}_4$, com término ao ser atingido o valor de 10^{-2} A/cm^2 . Aumento: 50x.

Figura 5.4.19: Aspecto da superfície da liga na condição envelhecida por 1.032 h após ensaio de polarização potenciodinâmica, em solução $0,01M \text{ Na}_2\text{SO}_4$, com término ao ser atingido o valor de 10^{-2} A/cm^2 . Aumento: 50x.

1.032 h

Figura 5.4.20: Aspecto geral das superfícies dos corpos-de-prova após polarização potenciodinâmica, em solução 0,01M Na₂SO₄. As fotos apresentam toda a superfície dos corpos-de-prova.

Aumento: 1.000x.

Aumento: 5.000x.

Figura 5.4.21: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da liga na condição solubilizada, após polarização potenciodinâmica em solução 0,01M Na₂SO₄.

Aumento: 1.000x.

Aumento: 5.000x.

Figura 5.4.22: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da liga na condição envelhecida por 2 h, após polarização potenciodinâmica em solução 0,01M Na₂SO₄.

Aumento: 1.000x.

Aumento: 5.000x.

Aumento: 1.000x.

Aumento: 5.000x.

Figura 5.4.24: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da liga na condição envelhecida por 1.032 h, após polarização potenciodinâmica em solução 0,01M Na₂SO₄.

5.4.3 Ensaios Eletroquímicos em Solução 0,0001M Na₂S.9H₂O

A Fig. 5.4.25 mostra o comportamento à polarização potenciodinâmica da liga solubilizada e a Fig. 5.4.26 ilustra o comportamento de todas as condições em estudo (solubilizada ou envelhecidas). Foram levantadas pelo menos cinco curvas para cada condição, que mostraram comportamentos semelhantes. Neste caso as curvas foram levantadas com tempo de imersão igual a 300 segundos e início no potencial de circuito aberto, pois ensaios preliminares com início em 300 mV abaixo do potencial de circuito aberto, mostraram que durante o trecho catódico ocorria a formação de produtos de coloração amarela que cobriam toda a superfície da amostra. A presença destes produtos provocou em alguns ensaios alteração no comportamento observado no trecho anódico, devido à presença de um segundo potencial de quebra, mas que não era reprodutivo, pois não ocorria para todos os ensaios. Assim optou-se por realizar os ensaios sem o trecho catódico.

Figura 5.4.25: Curva de polarização potenciodinâmica para condição solubilizada da liga Cu10Ni-3Al-1,3Fe, em solução 0,0001M Na₂S.9H₂O. Início da polarização no potencial de circuito aberto. Velocidade de varredura: 1 mV/s. Polarização iniciada após 300 segundos de imersão. As setas indicam o potencial de corrosão (E_{corr}) e o potencial de quebra de passividade (Eq).

Figura 5.4.26: Comparativo entre as curvas de polarização potenciodinâmica da liga nas condições solubilizada e envelhecidas, em solução 0,0001M Na₂S.9H₂O. Nota-se comportamento semelhante entre elas.

Neste eletrólito, o comportamento anódico foge um pouco do comportamento passivo típico, uma vez que a densidade de corrente aumenta progressivamente até valores da ordem de 10⁻⁴ A/cm². Após este trecho a densidade de corrente aumenta, não tão bruscamente como nos eletrólitos de NaCl e Na₂SO₄, mas ainda caracterizando um potencial de quebra de passividade (Eq). Os resultados das curvas de polarização para as condições envelhecidas podem ser observados na Fig. 5.4.27, que mostra que os valores de Eq não apresentaram diferenças significativas, considerando-se os desvios-padrão. O mesmo pode ser observado para os potenciais de circuito aberto (E_{corr}), conforme apresentado na Tab. 5.4.4.

Após os ensaios, as amostras foram examinadas em microscópio óptico, onde foram observados ataques localizados (Fig. 5.4.28), com presença de pequenas cavidades, distribuídas homogeneamente (Fig. 5.4.29). Novamente, tem-se aqui um comportamento que lembra o processo de corrosão por pite. Foi observado também, nas condições envelhecidas com tempo superior a 4 horas, a presença de produtos de coloração vermelha e azul.

Figura 5.4.27: Efeito do tempo de envelhecimento sobre o potencial de quebra de passividade da liga Cu10Ni-3Al-1,3Fe. Para comparação, é apresentado o valor para a condição solubilizada.

Amostras	E _{corr} (mV _{ECS})	E _q (mV _{ECS})
Solubilizada	-153 ±31	334 ±67
2 h	-160 ±25	325 ±48
16 h	-147 ±15	335 ±43
1.032 h	-174 ±30	369 ±41

Tabela 5.4.4: Potenciais de corrosão (E_{corr}) e potenciais de quebra de passividade (Eq) das amostras da liga Cu10Ni-3Al-1,3Fe, nas condições solubilizada e em envelhecida, em solução

As cavidades podem ser observadas nas imagens apresentadas nas Fig. 5.4.30 a 5.4.33, que foram obtidas em microscópio eletrônico de varredura (MEV). Nestas regiões ainda foram realizadas análises semiquantitativas por espectroscopia de energia dispersiva de raios-X (EDS). As análises mostram que nas regiões próximas e dentro das cavidades não ocorreram alterações na composição química, isto é, o ataque observado nas Fig. 5.4.30 a 5.4.33 não está associado ao processo de corrosão seletiva. Além disso, a observação em MEV mostra que o ataque é localizado e pouco profundo. No caso da condição solubilizada, a morfologia lembra um pite, mas do tipo largo e raso (Fig. 5.4.30). Nas condições envelhecidas, permanece o caráter localizado, mas a morfologia perde o aspecto de pite: nota-se

um ataque que gera rugosidade, aparentemente com produtos de corrosão e, em algumas situações, com morfologia de corrosão intergranular, como por exemplo, nas Fig. 5.4.31 a 5.4.33.

16 h

Figura 5.4.28: Aspecto das superfícies das amostras após ensaio de polarização potenciodinâmica, em solução 0,0001M Na₂S.9H₂O, com término ao ser atingido o potencial de 900 mV_{ECS}. Aumento: 100x.

1.032 h

Figura 5.4.29: Aspecto geral das superfícies dos corpos-de-prova após polarização potenciodinâmica, em solução 0,0001M Na₂S.9H₂O. As fotos apresentam toda a superfície dos corpos-de-prova.

Aumento: 500x. Aumento: 2.500x. Figura 5.4.30: Imagens de elétrons secundários para a condição solubilizada, após polarização potenciodinâmica em 0,0001M Na₂S.9H₂O.

Aumento: 500x. Aumento: 2.500x. Figura 5.4.31: Imagens de elétrons secundários para a condição envelhecida por 2 h, após polarização potenciodinâmica em solução 0,0001M Na₂S.9H₂O.

Aumento: 500x.

Aumento: 2.500x.

Aumento: 500x.

Aumento: 2.500x.

Figura 5.4.33: Imagens de elétrons secundários para a condição envelhecida por 1.032 h, após polarização potenciodinâmica em solução 0,0001M Na₂S.9H₂O.

5.5 ENSAIOS DE CORROSÃO-EROSÃO

5.5.1 Corrosão-Erosão Assistida por Polarização em 0,01M NaCI

A Fig. 5.5.1 apresenta uma curva de polarização potenciodinâmica típica para a condição solubilizada e para a envelhecida por 2, 16 e 1.032 h, na presença de partículas e agitação em 0,01 M NaCl, o que constitui o ensaio de corrosão-erosão assistida por polarização.

O comportamento anódico sofreu algumas alterações comparativamente às curvas obtidas em condição estagnada e sem partícula (Fig. 5.4.2), na região próxima ao potencial de corrosão a condição envelhecida apresenta um máximo de densidade de corrente para as condições envelhecidas por 16 e 1.032 h, semelhante a um trecho de corrosão ativa, e para potenciais mais altos, ocorre o potencial de quebra de passividade (Eq). Nota-se ainda que o processo corrosivo após o Eq ocorre com aumento da densidade de corrente, com tendência a apresentar densidade de corrente limite. No caso da solução estagnada a densidade de corrente aumenta continuamente, provavelmente devido ao processo de corrosão seletiva; a presença de erosão aparentemente altera as condições deste mecanismo. Através das curvas pode-se dizer ainda que os valores de Eq dos ensaios em condição estagnada (Fig. 5.4.2 e Tab. 5.4.1) são maiores que os valores dos ensaios com agitação e partícula (Fig. 5.5.1 e Tab 5.5.1).

Figura 5.5.1: Curvas de polarização potenciodinâmica, em solução 0,01M NaCl, com agitação (2.500 rpm) e partículas (10% Al₂O₃), com término ao ser atingido a densidade de corrente de 10⁻³ A/cm². Velocidade de varredura: 0,25 mV/s. As setas indicam o potencial de corrosão (E_{corr}) e o potencial de quebra de passividade (Eq) da amostra solubilizada da liga Cu10Ni-3Al-1,3Fe. Ângulo: 15°.

Amost	ras	E _{corr} (mV _{ECS})	Eq (mV _{ECS})
Solubili	zada	-152 ±8	-13 ±6
2 h		-177 ±12	-39 ±2
16 ł	า	-151 ±2	-8 ±3
1.032	h.	-197 ±9	-46 ±8

Tabela 5.5.1: Potenciais de circuito aberto (E_{corr}) e potenciais de quebra de passividade (Eq) das amostras solubilizada e envelhecida por 2, 16 e 1.032 h da liga Cu10Ni-3Al-1,3Fe, em solução 0,01M

As amostras ensaiadas foram observadas em microscópio óptico onde se notou a ocorrência de deformação plástica da superfície com presença de pequenas cavidades (Fig. 5.5.2), que são mais evidentes na condição envelhecida. Estas cavidades não foram observadas nos ensaios conduzidos na solução estagnada, e portanto são decorrentes do processo erosivo. As amostras foram observadas posteriormente em microscópio eletrônico de varredura (MEV), que mostra com mais clareza o ataque em questão (Fig. 5.5.3 e Fig. 5.5.6). As imagens revelam que nas condições solubilizada e envelhecidas existe um processo de corrosão-erosão, que gera pequenas cavidades distribuídas por toda superfície, mas que não são profundas. Nestas regiões ainda foram realizadas análises semiquantitativas por espectroscopia de energia dispersiva de raios-X (EDS), para auxiliar a caracterização destas regiões. As análises mostraram que dentro de algumas cavidades ocorreram alterações pouco significativas na composição química, isto é, não foi possível detectar com segurança o processo de desniquelação observado no caso da solução estagnada.

16 h

Figura 5.5.2: Aspecto das superfícies das condições solubilizada e envelhecida por 2h, 16 h e 1.032 h após ensaio de polarização potenciodinâmica, em solução 0,01M NaCl com agitação (2.500 rpm) e partículas (10% Al₂O₃), com término ao ser atingida a densidade de corrente de 10⁻³ A/cm². Ângulo: 15°. Aumento: 200x.

Aumento: 10.000x.

Figura 5.5.3: Imagens de elétrons secundários da superfície da condição solubilizada, após ensaio de polarização potenciodinâmica em 0,01M NaCl com agitação e partículas.

Aumento: 2.500x.

Aumento: 10.000x.

Aumento: 2.500x.

Aumento: 10.000x.

Figura 5.5.5: Imagens de elétrons secundários da superfície da condição envelhecida por 16 h, após ensaio de polarização potenciodinâmica em 0,01M NaCl com agitação e partículas.

Aumento: 10.000x.

Figura 5.5.6: Imagens de elétrons secundários da superfície da condição envelhecida por 1.032 h, após ensaio de polarização potenciodinâmica em 0,01M NaCl com agitação e partículas.

5.5.2 Corrosão-Erosão Assistida por Polarização em 0,01M Na₂SO₄

A Fig. 5.5.7 apresenta uma curva de polarização típica para a condição solubilizada e para a envelhecida por 2, 16 e 1.032 h, na presença de partículas e agitação em solução 0,01 M Na₂SO₄. Aqui a comparação entre estagnação e agitação com partículas leva aos mesmos comentários feitos para a solução 0,01M NaCl, a menos da ausência do máximo de densidade de corrente observado próximo ao potencial de corrosão (Fig. 5.5.1), ou seja: há trecho passivo seguido de potencial Eq, sendo que a partir deste potencial o aumento da densidade de corrente não é tão acentuado, originando uma densidade de corrente limite. Observa-se também que o potencial de circuito aberto е de quebra de passividade diminuíram comparativamente aos valores médios da condição estagnada (Tab. 5.4.3 e 5.5.2). A polarização em Na₂SO₄ em condição estagnada originou cavidades com crescimento no sentido da laminação. Já na presença de erosão (agitação e partículas) ainda se notam tais cavidades, no entanto, com aspecto raso (como se observa nas Fig. 5.5.8 a 5.5.12 de microscopia óptica e eletrônica de varredura).

Figura 5.5.7: Curvas de polarização potenciodinâmica, em solução 0,01M Na₂SO₄, com agitação (2.500 rpm) e partículas (10% Al₂O₃), com término ao ser atingida a densidade de corrente de 10⁻³ A/cm². Velocidade de varredura: 0,25 mV/s. As setas indicam o potencial de corrosão (E_{corr}) e o potencial de quebra de passividade (Eq) da amostra solubilizada da liga Cu10Ni-3Al-1,3Fe. Ângulo: 15°.

E _{corr} (mV _{ECS})	Eq (mV _{ECS})
-159 ±17	18 ±11
-187 ±7	0 ±23
-173 ±23	13 ±13
-198 ±4	-11 ±4
	E _{corr} (mV _{ECS}) -159 ±17 -187 ±7 -173 ±23 -198 ±4

Tabela 5.5.2: Potenciais de circuito aberto (E_{corr}) e potenciais de quebra de passividade (Eq) das amostras solubilizada e envelhecida por 2, 16 e 1.032 h da liga Cu10Ni-3Al-1,3Fe, em solução 0.01M Na₂SO₄.

Nas regiões atacadas foram realizadas análises semiquantitativas por espectroscopia de energia dispersiva de raios-X (EDS) indicando que nas regiões próximas e nas atacadas não ocorreram alterações na composição química.

Solubilizada

2 h

16 h

1.032 h

Figura 5.5.8: Aspecto das superfícies das condições solubilizada e envelhecida por 2, 16 e 1.032 h após ensaio de polarização potenciodinâmica, em solução 0,01M Na₂SO₄ com agitação (2.500 rpm) e partículas (10% Al₂O₃), com término ao ser atingida a densidade de corrente de 10⁻³ A/cm². Ângulo: 15°. Aumento: 100x.

Aumento: 1.000x.

Aumento: 2.500x.

Figura 5.5.9: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da condição solubilizada, após ensaio de polarização potenciodinâmica em solução 0,01M Na₂SO₄ com agitação e partícula.

Aumento: 1.000x. Aumento: 2.500x. Figura 5.5.10: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da condição envelhecida por 2 h, após ensaio de polarização potenciodinâmica em solução 0,01M Na₂SO₄ com agitação e partícula.

Aumento: 1.000x.

Aumento: 2.500x.

Figura 5.5.11: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da condição envelhecida por 16 h, após ensaio de polarização potenciodinâmica em solução 0,01M Na₂SO₄ com agitação e partícula.

Aumento: 1.000x. Aumento: 2.500x. Figura 5.5.12: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da condição envelhecida por 1.032 h, após ensaio de polarização potenciodinâmica em solução 0,01M Na₂SO₄ com agitação e partícula.

5.5.3 Corrosão-Erosão Assistida por Polarização em 0,0001M Na₂S.9H₂O

A Fig. 5.5.13 apresenta uma curva de polarização típica para a condição solubilizada e para a envelhecida por 2, 16 e 1.032 h. Neste caso da solução contendo Na₂S, não foi observada alteração da forma da curva de polarização com a introdução de erosão (agitação e partículas); apenas se observa que o potencial de circuito aberto e de quebra de passividade diminuíram comparativamente aos valores médios da condição estagnada (Tab. 5.4.4 e 5.5.3).

A observação em microscópio óptico revelou uma superfície de aspecto corroído, semelhante à corrosão uniforme, no entanto, apresentando pequenas cavidades circulares (Fig. 5.5.14). Em microscópio eletrônico de varredura (MEV), foi possível verificar que a amostra apresenta cavidades arredondadas devido à corrosão e o restante da superfície apresenta sinais de deformação causados pelo impacto das partículas (Fig. 5.5.15 a 5.5.18). Nestas regiões ainda foram realizadas análises semiquantitativas por espectroscopia de energia dispersiva de raios-X (EDS), para auxiliar a caracterização das regiões das atacadas. As análises mostraram que nas regiões próximas e sobre aquelas corroídas não houve alterações da composição química. As imagens ainda mostram que a quantidade de cavidades observadas na amostra solubilizada é superior ao que foi observado nos ensaios sem agitação. Tal

fato pode estar relacionado com a deformação causada pelas partículas, que acabam gerando pontos favoráveis para o início do processo observado.

Figura 5.5.13: Curvas de polarização potenciodinâmica, em solução 0,0001M Na₂S.9H₂O, com agitação (2.500 rpm) e partículas (10% Al₂O₃), com término ao ser atingido o potencial de 900 mV_{ECS}. Velocidade de varredura: 0,25 mV/s. As setas indicam o potencial de corrosão (E_{corr}) e o potencial de quebra de passividade (Eq) da amostra solubilizada da liga Cu10Ni-3Al-1,3Fe. Ângulo: 15°.

Amostras	E _{corr} (mV _{ECS})	Eq (mV _{ECS})
Solubilizada	-259 ±35	243 ±53
2 h	-295 ±13	221 ±69
16 h	-262 ±39	265 ±80
1.032 h	-306 ±2	216 ±14

Tabela 5.5.3: Potenciais de circuito aberto (E_{corr}) e potenciais de quebra de passividade (Eq) das amostras solubilizada e envelhecida por 2, 16 e 1.032 h da liga Cu10Ni-3Al-1,3Fe, em solução 0.0001M Na-S 9H-O

16 h

Figura 5.5.14: Aspecto das superfícies das condições solubilizada e envelhecida por 2, 16 e 1.032 h após ensaio de polarização potenciodinâmica, em solução 0,0001M Na₂S.9H₂O com agitação (2.500 rpm) e partículas (10% Al₂O₃), com término ao ser atingido o potencial de 900 mV_{ECS}. Ângulo: 15°. Aumento: 100x.

Aumento: 2.500x.

Aumento: 10.000x.

Figura 5.5.15: Imagens de elétrons secundários para a condição solubilizada, após ensaio de polarização potenciodinâmica em solução 0,0001M Na₂S.9H₂O com agitação e partícula.

Aumento: 2.500x.

Aumento: 5.000x.

Aumento: 2.500x.

Aumento: 5.000x.

Figura 5.5.18: Imagens de elétrons secundários para a condição envelhecida por 1.032 h, após ensaio de polarização potenciodinâmica em solução 0,0001M Na₂S.9H₂O com agitação e partícula.

Aumento: 2.500x.

Aumento: 5.000x.

6 DISCUSSÃO DOS RESULTADOS

6.1 EFEITOS DE AQUECIMENTO A 550°C SOBRE A MICROESTRUTURA E PROPRIEDADES MECÂNICAS DA LIGA Cu-10Ni-3AI-1,3Fe

Não há menção, na literatura tradicional, sobre os efeitos do aquecimento a 550°C do sistema quartenário Cu-Ni-Al-Fe. Encontram-se apenas relatos para os sistemas ternários Cu-Ni-Al e Cu-Ni-Fe. No caso do sistema ternário Cu-Ni-Fe é apresentado que para teores de Fe maiores que 2% e tratamentos abaixo de 700°C, a liga fica muito susceptível à precipitação de uma fase rica em ferro (Fe). Já no caso do sistema Cu-Ni-Al, alguns autores apresentam a possibilidade da presença de um superreticulado CFC de composição entre Ni₃AI e CuNi₂AI.⁸⁰ Outros autores^{85,86} referenciam que nas ligas cuproníquel com adições de alumínio ocorre a precipitação coerente e incoerente de Ni₃AI e a precipitação incoerente de NiAI, que só são observados através de microscopia eletrônica de transmissão (MET). Através dos dados encontrados na literatura e os espectros obtidos, pode-se dizer por exclusão que o precipitado mais provável é o Ni₃AI, pois é o que apresenta o maior número de picos coincidentes (Fig. 5.3.7); além disso, a Fig. 5.3.7 mostra que o pico em 90° apresenta uma intensidade superior ao que seria característico do cobre. Esta intensidade mais elevada pode ser decorrente da presenca da fase Ni₃Al já que esta apresenta uma intensidade elevada para este ângulo. Para ajudar na análise dos prováveis precipitados deste sistema quaternário, foram realizadas simulações no programa Thermo-Calc[®], com o intuito de identificar as possíveis fases precipitadas (Fig. 6.1.1). A simulação reforça a idéia que o precipitado observado na liga é o Ni₃Al, numa fração em massa de aproximadamente de 8%.

As imagens das Fig. 5.3.2 a 5.3.5 mostram que a morfologia dos precipitados encontrados nas amostras envelhecidas por até 16 h são semelhantes e indicam um processo de precipitação intergranular, que lembra um processo de precipitação descontínua, onde a interface (contorno de grão) atua como frente de reação, avançando sobre a matriz supersaturada do contorno de grão adjacente e deixando para trás uma estrutura lamelar. Pode-se supor, portanto, que o precipitado

intergranular observado se forma num processo de precipitação celular. Já a amostra envelhecida por 1.032 h deixa evidente que a microestrutura apresentou coalescimento da fase inicialmente precipitada (Fig. 5.3.6), e nota-se também a formação de precipitados intragranulares, cuja cinética de formação é mais lenta, considerando a maior facilidade de difusão de Ni e Al pelos contornos de grão. Tal fato está relacionado com a taxa de nucleação homogênea menor, se comparada com a precipitação heterogênea/celular, conforme pode ser observado na Fig. 5.3.1.

Figura 6.1.1: Fração em massa de fase α e de Ni₃Al em função da temperatura, obtida em simulação no programa *Thermo-Calc*[®], para a liga Cu10Ni-3Al-1,3Fe.

A distribuição dos precipitados gerados pelos tratamentos a 550°C alterou a dureza, limite de escoamento, limite de resistência e ductilidade. A rigor, as propriedades mecânicas têm uma parcela decorrente dos precipitados observados na Fig. 5.3.1 e a outra das partículas finamente dispersas – precipitados intragranulares (Fig. 5.3.2 a 5.3.6), que provocam uma maior dificuldade de movimentação das discordâncias. Tal fato é comprovado através das medidas de microdureza que foram realizadas na matriz e nas regiões com precipitados, que indicam um aumento da dureza da matriz decorrente dos precipitados intragranulares (Fig. 6.1.2). Este mecanismo de

endurecimento se aplica as condições de envelhecimento de até 16 h, conforme indica os valores de n (expoente de encruamento) apresentados na Tab. 5.2.2. No caso das amostras superenvelhecida pode-se dizer que o mecanismo de endurecimento sofre alterações, principalmente quando observamos os valores do expoente de encruamento que sofre um aumento significativo. Um dos possíveis mecanismos que pode estar ocorrendo na condição superenvelhecida é o mecanismo de Orowan, onde ocorrer a formação dos anéis de discordâncias nos precipitados incoerentes.

Figura 6.1.2: Medidas de microdureza na matriz para a condição envelhecida por 15 min e 1 h, com carga de 9,8.10⁻² N (10 gf). Para comparação, é apresentado o valor para a condição solubilizada

6.2 DESEMPENHO DA LIGA Cu-10Ni-3AI-1,3Fe EM 0,01M NaCI

6.2.1 Ensaios Eletroquímicos

A liga Cu-10Ni-3Al-1,3Fe, em 0,01M NaCl, apresentou médias de potenciais de corrosão entre -108 e -100 mV_{ECS} (Tab. 5.4.1). Através do cálculo do potencial de equilíbrio para as reações de oxigênio e hidrogênio, constata-se que a corrosão

desta liga, nesse meio, é um processo controlado por oxigênio. As respectivas equações de *Nernst* fornecem:

$$\begin{split} &\mathsf{E}_{_{H^{+}/H_{2}}} = -0,059.p\mathsf{H} - 0,029.logp_{_{H_{2}}} = -0,384(\mathsf{V}_{_{H}}) = -0,626(\mathsf{V}_{_{ECS}}) & (eq.~6.2.1) \\ &\mathsf{E}_{_{O_{2}/H_{2}O}} = 1,228 - 0,059.p\mathsf{H} + 0,014.logp_{_{O_{2}}} = +0,844(\mathsf{V}_{_{H}}) = +0,601(\mathsf{V}_{_{ECS}}) & (eq.~6.2.2) \\ &\mathsf{No} \ calculo, \ foi \ considerado \ p\mathsf{H} \ da \ solução \ 6,5 \ (Tab.~4.4.1) \ e \ pressões \ parciais \ (p_{_{H_{2}}} e p_{_{O_{2}}}) \ iguais \ a \ 1 \ atm. \end{split}$$

Como o potencial de equilíbrio para a reação de hidrogênio é inferior aos potenciais de corrosão, a única reação catódica possível é a de oxigênio.

Por sua vez, sendo o controle cinético por oxigênio, é esperada a observação da densidade de corrente limite. No entanto, observando as curvas da Fig. 5.4.2, podese dizer que estas mostram apenas uma tendência da densidade de corrente limite nos potenciais próximos de -400 a -300 mV_{ECS}. Para esclarecer esse ponto, foi levantada a curva da Fig. 6.2.1 (condição solubilizada), onde se observa que nos potenciais próximos do E_{corr} , o mecanismo de controle é eletroquímico e, para sobretensões catódicas maiores têm-se o controle por transporte de massa, com o surgimento da densidade de corrente limite do oxigênio (i_L). A curva de hidrogênio é esperada para potenciais abaixo de -626 mV_{ECS}: provavelmente, a densidade de corrente limite de oxigênio, resultando que apenas o valor constante desta última é observado.

No trecho anódico as curvas apresentam comportamento passivo e, em seguida, um aumento brusco nos valores de densidade de corrente, caracterizando um potencial de quebra de passividade (Eq). Este potencial lembra, inicialmente, o potencial de pite que indica que um metal passivo sofre uma quebra localizada da película passiva. No entanto, trabalhos recentes com ligas cuproníquel na condição solubilizada mostraram que estes potenciais estão diretamente relacionados com o processo de corrosão seletiva do níquel (desniquelação) e não com a formação de pites.^{13,55,87} As Fig. 5.4.4 a 5.4.9 deixam claro que a morfologia de corrosão não é a de corrosão por pite. É possível verificar também na Fig. 5.4.4 um acobreamento da região indicada pela seta, o que pode ser um indício de redeposição do metal mais nobre, podendo estar associado à ocorrência do mecanismo de dissolução-

redeposição. Convém lembrar que durante o processo de corrosão seletiva pode ocorrer a interação de dois mecanismos, os mecanismos de difusão e dissoluçãoredeposição. No estágio observado na Fig. 5.4.4 pode-se dizer que o material redepositado devido ao mecanismo de dissolução-redeposição, pode estar favorecendo os mecanismos de difusão, pois o material redepositado provoca a formação de um par galvânico e de uma superfície porosa, que favorece o processo de difusão.

Figura 6.2.1: Curva de polarização potenciodinâmica no sentido catódico, em solução 0,01M NaCl, para a amostra solubilizada da liga Cu10Ni-3Al-1,3Fe. Início da polarização no potencial de circuito (E_{corr}) e término 900 mV abaixo do E_{corr}. Velocidade de varredura: 1 mV/s. Início da polarização após 300 segundos de imersão.

Por sua vez, as análises de composição química das regiões corroídas identificam a diminuição do teor de Ni, evidenciando o processo de desniquelação (Tab. 5.4.2). Em função do tempo de envelhecimento, a princípio, nota-se uma diminuição do teor de Ni na região corroída (Tab. 5.4.2), mas não podemos esquecer que nestas regiões há uma fina precipitação intragranular que acaba alterando a leitura do teor de níquel (Fig. 5.3.2 a 5.3.6) (que compromete a análise do teor de Ni), a análise do equilíbrio através do programa *Thermo-Calc*[®] (Fig. 6.2.2a) mostra que a diminuição da fração em massa de Ni na região da matriz sem ataque pode chegar a valores

abaixo daqueles apresentados na Tab. 5.4.2, especialmente para a condição envelhecida por 1.032 h.

Para verificar ainda se as leituras dos valores de Ni não estavam sendo mascaradas devido a presença da redeposição de cobre na superfície corroída, foram realizados novos ensaios de polarização potenciodinâmica, onde logo após os ensaios os produtos redepositados e não aderentes de coloração vermelha foram removidos através da limpeza mecânica, com algodão e álcool etílico hidratado. As análises por EDS destas regiões mostraram que os resultados eram os mesmos dos observados na Tab. 5.4.2.

Com relação às variações nos valores de Eq, o envelhecimento provoca um aumento nos valores dos potenciais de quebra de passividade (Eq), conforme pode ser observado na Fig. 5.4.3, sendo mais evidente para as condições envelhecidas por 2 e 1.032 h. Este aumento é um efeito benéfico do envelhecimento, uma vez que maior Eq significa maior resistência ao início do processo de desniquelação.

Trabalhos anteriores^{13,87} mostraram que a adição de Al à liga Cu-10Ni diminui o potencial Eq em soluções de NaCl. Um abaixamento ainda maior de Eq foi observado quando a liga continha simultaneamente adições de Al e Fe. Tais estudos foram obtidos para ligas solubilizadas. Assim, pode-se dizer que o aumento do Eq após 2 h de envelhecimento, pode estar relacionado com a diminuição do teor de Al (Fig. 6.2.2c) em solução sólida causado pela precipitação da fase Ni₃Al. Por sua vez, a intensa precipitação que ocorre ao longo do tempo, causa a diminuição do teor de Ni (Fig. 6.2.2a) na matriz, levando ao aumento do potencial Eq. O consumo de Al e Ni pela precipitação leva ao aumento do teor de Fe na matriz (Fig. 6.2.2b). No entanto, é difícil quantificar a contribuição do elemento Fe sobre o valor de Eq. Em trabalhos anteriores^{13,87} a adição isolada de 1,3% Fe à liga Cu-10Ni aumentou o potencial Eq em NaCl (0,01M). A princípio, como aqui também se trata de solução 0,01M NaCl, pode-se esperar que após o envelhecimento, o aumento de Fe (Fig. 6.2.2b) em solução sólida também contribua para o aumento de Eq.

O valor de Eq pode ser utilizado como um parâmetro de classificação das ligas cuproníquel, como um indicador de início de corrosão seletiva. Assim quanto maior o valor de Eq, maior a resistência ao início do processo. No entanto, no caso das condições envelhecidas, não foi possível verificar se os valores de Eq estão diretamente relacionados com o grau de desniquelação. Trabalhos anteriores⁸⁷ mostraram que esta relação não está vinculada diretamente com o valor de Eq, mas com a composição química da liga.

Figura 6.2.2: Fração em massa de Ni (a), Fe (b) e AI (c) na fase α, na condição de equilíbrio, em função da temperatura de envelhecimento (550°C).

6.2.2 Ensaios de Corrosão-Erosão Assistidos por Polarização

Os principais resultados da aplicação de polarização sem e com agitação e partículas estão listados na Tab. 6.2.1.

Tabela 6.2.1: Principais resultados da aplicação de polarização sem e com agitação e partículas.

Polarização em Condição Estagnada	Polarização em Condição de Agitação com Partículas
Ocorre passivação	Há dificuldade de atingir a passivação
Morfologia de corrosão localizada	Morfologia de ataque generalizado
Mecanismo de corrosão seletiva	Provável mecanismo de corrosão seletiva (não foi possível determinar a variação de composição química)
Corrosão sem profundidade	Corrosão sem profundidade
(Não há formação de cavidades)	(Há formação de cavidades rasas)
Manchas localizadas, indicando formação de produto de corrosão.	Não há manchamento ou formação de produtos de corrosão
Eq bem definido	Eq bem definido
	Há sinais de deformação plástica.

Também para efeito de comparação, a Fig. 6.2.3 apresenta o comportamento da liga solubilizada sem e com a presença de agitação e partículas.

Conforme já mencionado no capítulo 5 (Resultados Experimentais) na presença de erosão a densidade de corrente passiva aumenta e há uma diminuição do valor de Eq, mas sem a diminuição significativa do potencial E_{corr}. Este efeito da presença de agitação e partículas pode ser explicado pelas sucessivas rupturas da película passiva: a remoção desta película mantém a superfície da liga em constante atividade e reação para formação de nova película. Uma vez que o fornecimento de oxigênio é maior devido à agitação, isto leva a maiores densidades de corrente.

Figura 6.2.3: Comparativo entre as curvas de polarização potenciodinâmica da liga na condição solubilizada com a solução 0,01M NaCl na condição estagnada (ensaio de corrosão) e com agitação e partículas (ensaios de corrosão-erosão).

Por sua vez, a definição do potencial Eq como potencial de início da desniquelação ainda é pouco ou quase nada explorada na literatura. Sobre a corrosão seletiva é mencionado o efeito deletério dos íons cloreto.¹³ Um mecanismo provável de ruptura da película passiva envolve a adsorção de íons cloreto e sua condução até a interface Cu₂O/Cu_{liga} onde ocorrerão as reações de formação de sal de cloreto de cobre (CuCl) e outros (ver Fig. 3.4.2), que levam a desestabilização da película de Cu₂O com a formação de CuO não protetor. O caráter não protetor do CuO permitiria o início do processo de corrosão seletiva. Já o papel da erosão é intensificar os danos à película passiva, isto é, ajudar na renovação da película passiva e na geração de pontos de elevada deformação plástica. Associado a este efeito têm-se a presença dos íons cloreto, que podem acabar assumindo posições dentro da camada de óxido durante a deformação da mesma.

Com relação à superfície das amostras ensaiadas na solução com agitação e partículas, nota-se que a característica do ataque é diferente do observado nas amostras ensaiadas na condição estagnada. Quando se compara a Fig. 5.4.4 (e seguintes, até 5.4.11) com a Fig. 5.5.2, nota-se a mudança no caráter da

morfologia de ataque, o qual passa de localizado para generalizado. A rigor, são observadas inúmeras cavidades rasas, próximas entre si dando o aspecto de corrosão generalizada. As análises por EDS nestas regiões mostraram evidências de empobrecimento em Ni, só que menos acentuado. Tais evidências indicam que os potenciais Eq, nas duas condições de ensaio, estão relacionados com o processo de corrosão seletiva.

No entanto, no caso estagnado, uma vez iniciado o processo de corrosão seletiva este se desenvolve de forma localizada, sem grande profundidade e com formação de produtos ricos em cobre ao redor da região desniquelada. Na presença de erosão (agitação + partículas), não é possível o desenvolvimento da corrosão seletiva de forma localizada, uma vez que a ação erosiva acaba provocando uma remoção do cobre redepositado, e por isso o teor de Ni medido não é tão baixo. De fato, as análises por microssonda eletrônica não foram capazes de identificar perda de Ni significativa como no caso estagnado. O resultado final é uma superfície com sinais de deformação plástica que sofreu alguma dissolução, o que lembra a corrosão generalizada. Pode-se dizer ainda que a dureza do material neste caso não interfere no processo, pois o fenômeno é puramente superficial.

Para entender melhor o efeito causado pela presença das partículas e verificar também se o potencial Eq nos ensaios com agitação e partículas está relacionado com a formação das cavidades rasas observadas nas Fig. 5.5.3 a 5.5.6, foram realizados novos ensaios com agitação, mas sem partícula.

Nos ensaios preliminares com agitação e sem partícula observou-se um número excessivo de bolhas de ar, o que prejudicou as leituras do potenciostato. Para solucionar este problema foi necessário inserir uma quantidade de partículas, de forma gradativa, de 20 em 20 g, até que o fluxo ficasse uniforme e sem bolhas de ar. Esta condição ocorreu quando foi atingido 100 g de partículas para 4 L de solução, que representam 2,44% em peso. A Fig. 6.2.4 apresenta as curvas de polarização potenciodinâmica dos ensaios com 10% e 2,44% em peso de partículas. Nota-se que a diminuição no número de partículas provocou alteração apenas do comportamento da liga solubilizada, a qual deixou de apresentar trecho passivo.

Esta alteração no comportamento da condição solubilizada pode estar relacionada com a modificação do comportamento do fluido, que nesta situação é menos viscoso e mais turbulento que na condição de ensaio com 10% de partícula, podendo provocar alterações no efeito erosivo. A diminuição da quantidade das partículas faz com que ocorra uma diminuição do choque entre as mesmas, que somado ao aumento da turbulência, faz com que as partículas se choquem com mais intensidade na superfície das amostras. Esta condição pode provocar a formação de uma estrutura mais encruada, quando comparada com o ensaio com 10% de partícula, devido aos esforços de compressão decorrentes dos impactos das partículas serem mais agressivos, que acaba prejudicando a aderência e integridade da película (ver Fig. 6.2.5 a 6.2.9). Estes danos na película protetora acabam não permitindo observar o comportamento passivo, apresentado anteriormente nos ensaios com 10% de partícula (Fig. 5.5.1). Já na condição envelhecida observa-se que o ataque foi menos intenso no ensaio com menos partículas, provavelmente devido ao aumento da dureza superficial promovido pela precipitação de Ni₃AI. Através dos resultados, pode-se dizer que o aumento no número de partículas apenas intensificou a degradação nas condições envelhecidas, mas não alterou o comportamento eletroquímico, o que provavelmente está relacionado com a dureza superficial promovida pelo envelhecimento.

Já com relação a formação das cavidades rasas observadas nas condições solubilizada e envelhecida, pode se dizer que estas não estão associadas com o processo de corrosão por pite, pois no ensaio com 2,44% de partículas na condição solubilizada o comportamento observado foi de corrosão generalizada (Fig. 6.2.4), mas com a presença de cavidades (Fig. 5.5.3 e 6.2.6). Isto leva a dizer que a formação destas cavidades está diretamente relacionada com o efeito erosivo. Apesar das análises semiquantitativas por espectroscopia de energia dispersiva de raios-X (EDS) não serem conclusivas, estas mostraram que dentro de algumas cavidades ocorreram alterações significativas na composição química, o que indica que os Eq observados estão relacionados com o processo de corrosão seletiva.

Figura 6.2.4: Curvas de polarização potenciodinâmica em 0,01M NaCl da liga nas condições solubilizada e envelhecidas nos ensaios com agitação (2.500 rpm) e partículas (2,44% e 10% de Al₂O₃) com término ao ser atingido a densidade de corrente de 10⁻³ A/cm².

16 h

Figura 6.2.5: Aspecto das superfícies nas condições solubilizada e envelhecida por 2, 16 e 1.032 h após ensaio de polarização potenciodinâmica, em solução 0,01M NaCl com agitação (2.500 rpm) e partículas (2,44% de Al₂O₃), com término ao ser atingida a densidade de corrente de 10⁻³ A/cm². Ângulo: 15°. Aumento: 200x.

Aumento: 10.000x.

Figura 6.2.6: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da condição solubilizada, após ensaio de polarização potenciodinâmica em solução 0,01M NaCl com agitação e partícula (2,44% de Al₂O₃).

Aumento: 2.500x.

Aumento: 10.000x.

Figura 6.2.7: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da condição envelhecida por 2 h, após ensaio de polarização potenciodinâmica em solução 0,01M NaCl com agitação e partícula (2,44% de Al₂O₃).

Aumento: 2.500x.

Aumento: 10.000x.

Aumento: 2.500x.

Aumento: 10.000x.

Figura 6.2.9: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da condição envelhecida por 1.032 h, após ensaio de polarização potenciodinâmica em solução 0,01M NaCl com agitação e partícula (2,44% de Al₂O₃).

6.3 DESEMPENHO DA LIGA Cu10Ni-3AI-1,3Fe EM 0,01M Na₂SO₄

6.3.1 Ensaios Eletroquímicos

A Fig. 5.4.13 apresenta as curvas para as condições solubilizada e envelhecida por 2, 16 e 1.032 h, com tempo de imersão igual a 300 segundos e início da curva em 300 mV abaixo do potencial de circuito aberto. Notam-se comportamentos semelhantes, e reprodutíveis, conforme observado na Tab. 5.4.3. De modo análogo ao que foi feito para 0,01M NaCl, a aplicação das equações de Nernst, agora para o pH igual a 5,5 (Tab. 4.4.1), fornece os seguintes potenciais de equilíbrio:

$$E_{H^{+}/H_{2}} = -0,325 (V_{H}) = -0,567 (V_{ECS})$$
$$E_{O_{2}/H_{2}O} = +0,902 (V_{H}) = +0,659 (V_{ECS})$$

Novamente, observa-se que apenas a reação do oxigênio está ocorrendo, pois o potencial do hidrogênio está abaixo do potencial de início da curva, similar ao observado para 0,01M NaCl. Através da curva experimental da Fig. 6.3.1 levantada para a condição solubilizada até 900 mV abaixo do E_{corr} , observa-se a densidade de corrente limite (i_L), característica do controle por oxigênio.

Figura 6.3.1: Curva de polarização potenciodinâmica no sentido catódico, em solução 0,01M Na₂SO₄, para a condição solubilizada da liga Cu10Ni-3Al-1,3Fe. Início da polarização no potencial de circuito (E_{corr}) e término em 900 mV abaixo do E_{corr}. Velocidade de varredura: 1 mV/s. Início da polarização após 300 segundos de imersão.

Por sua vez, o comportamento anódico em 0,01M Na₂SO₄ não foi o mesmo do observado para 0,01M NaCl. Primeiramente, o potencial Eq não apresentou variações significativas com os diferentes tratamentos térmicos, o que sugere que as características não são alteradas pelos tempos de envelhecimento da liga. Outra diferença importante foi a morfologia do ataque, que em 0,01M Na₂SO₄ surgiu como cavidades alongadas (Fig. 5.4.21 a 5.4.24), morfologia esta que se mantém também nos ensaios de corrosão-erosão (Fig. 5.5.8).

Vale mencionar que o valor de Eq nas ligas cuproníquel também é um indicador do início de corrosão seletiva. No entanto, análises de EDS nas cavidades alongadas não mostraram qualquer evidência de desniquelação. Fica, portanto, considerado apenas o mecanismo de pite como responsável pelo surgimento das cavidades alongadas e a sua nucleação determinada por Eq.

Para explicar esse comportamento, pode-se utilizar inicialmente um mecanismo de pite genérico, onde o processo de corrosão por pite ocorre em duas etapas: nucleação e crescimento. A nucleação ocorre pela quebra da passividade em algum ponto da superfície do metal. Esta quebra provoca a formação de uma célula eletroquímica, onde o anodo é uma área microscópica do metal ativo e o catodo é toda a área macroscópica restante do material. O papel do íon SO₄⁻² seria o de romper localmente a película de Cu₂O gerando a pequena área anódica que cresceria por efeito galvânico.[§] No entanto, o efeito galvânico não é suficiente para explicar o crescimento do pite – conforme se discute a seguir.

Nos processos comuns, uma vez iniciado, o pite cresce por um processo autocatalítico, isto é, no interior do pite são criadas condições que mantêm o pite em atividade.^{60,61} No entanto, no caso de cobre e suas ligas esse comportamento pode ser diferente, pois dentro do pite ocorre o acúmulo de íons de cobre associado ao empobrecimento de oxigênio no eletrólito. Essa combinação pode tornar o pite uma região catódica comparativamente à região externa quando as curvas de polarização anódica (do pite e da matriz) e catódica do oxigênio (para o pite e para a matriz),

[§] Essa hipótese mostra-se termodinamicamente possível quando se comparam os valores de energia livre de formação dos possíveis compostos para o sistema Cu, O e S: $\Delta G^{0}_{Cu_{2}O} = -146 \text{ kJ/mol}$; $\Delta G^{0}_{CuO} = -127 \text{ kJ/mol} e \Delta G^{0}_{Cu_{2}SO_{4}} = -662 \text{ kJ/mol}$. Logo, os óxidos de cobre são instáveis comparativamente ao sulfato de cobre. Além disso, o Cu₂SO₄ é solúvel em água, enquanto o CuO é praticamente insolúvel.⁸⁸

atingem determinadas posições. O acúmulo de íons de cobre aumenta o potencial de equilíbrio, levando a curva anódica do pite para potenciais mais altos e o empobrecimento em oxigênio no interior do pite diminui o potencial de corrosão desta pequena região. Pode ocorrer que o efeito do acúmulo de íons de cobre no interior do pite seja suficiente para colocar o potencial de corrosão do pite numa posição mais nobre do que o restante da matriz. Se isso ocorre, a região da matriz sofre corrosão enquanto o pite fica protegido, parando de crescer. Isso pode explicar a ausência de pites de grande profundidade. Em condições contrárias, o efeito galvânico ajuda o crescimento do pite. No entanto, nota-se que o efeito galvânico, no caso do cobre, é pequeno e pode mudar de sentido várias vezes no decorrer do processo.

Assim, para que o pite cresça é necessária a formação da membrana porosa e conforme apresentado condutora, mecanismo anteriormente, constituída basicamente de óxido cuproso (Cu₂O), onde é estabelecido um bolso de eletrólito com concentração elevada de íons cuprosos (Cu⁺). Esta condição faz com que a membrana se comporte como um eletrodo bipolar, onde a oxidação ocorre na face mais próxima do cobre, e redução na face em contato com a água. Os íons cuprosos difundidos para fora da membrana em contato com a água são oxidados para cúprico. Alguns são precipitados como sais insolúveis, mas outros são reduzidos novamente para cuprosos na superfície da membrana e ficam disponíveis para repetir o ciclo de oxidação-redução. Estes sais podem ser formados a partir de SO₄²⁻. A ausência da membrana também não permitirá que ocorra o acúmulo dos agentes responsáveis pelo processo de pite, não permitindo que o mesmo cresça. Esta situação é mais crítica nos ensaios de corrosão-erosão, uma vez que, o efeito erosivo acaba realizando uma limpeza na superfície da liga. Isto ajuda explicar também o porquê da pequena profundidade dos pites observados em 0,01M Na₂SO₄, pois uma vez que a membrana é rompida o processo pára (Fig. 3.4.3).

As considerações acima, explicam o crescimento dos pites, mas não explicam sua morfologia alongada. Estes pites alongados (Fig. 5.4.21 a 5.4.24) sempre ocorrem perpendicularmente à direção de laminação. As imagens das Fig. 5.4.21 a 5.4.24 mostram ainda que a presença dos precipitados na condição envelhecida não

alterou o comportamento e também não atuou como uma barreira para o avanço dessas cavidades através dos grãos do material, o que indica que as cavidades não são um fenômeno cristalográfico de um grão apenas, mas podem estar relacionadas a uma textura de deformação/recristalização. As cavidades podem ser caracterizadas como pites com orientação preferencial. Vale ressaltar que durante os ensaios tomou-se o cuidado de posicionar o corpo-de-prova de modo a não ocorrer o efeito da gravidade sobre o crescimento. Com o aumento da densidade de corrente, as cavidades acabam se alongando perpendicularmente à direção de laminação, sem se aprofundar para o interior do material. Para entender melhor este efeito pode-se pensar em análises de EBSD (*Electron Backscattering Diffraction*), que fica como sugestão para trabalhos futuros.

6.3.2 Ensaios de Corrosão-Erosão Assistidos por Polarização

A Fig. 6.3.2 compara as curvas de polarização em 0,01M Na₂SO₄ para os ensaios de corrosão e corrosão-erosão, para a condição solubilizada. Nota-se o efeito da erosão sobre a posição da curva de polarização: o E_{corr} e o Eq são menores (ver Tab. 5.4.3 e 5.5.2) e a densidade de corrente no trecho de passivação tem a mesma ordem de grandeza (Fig. 6.3.2), para todas as condições (Fig. 5.4.13 e 5.5.7). Por sua vez, a morfologia de ataque se mantém (Fig. 5.4.21 a 5.4.24 comparativamente às Fig. 5.5.9 a 5.5.12), isto é, há formação de pites alongados, mas com direções diferentes conforme observado na Fig. 6.3.3. Já sua profundidade na presença de erosão, é muito menor.

Esse comportamento está de acordo com o mecanismo discutido no item anterior, isto é, a dependência da corrosão por pite por Na₂SO₄ com a membrana de Cu₂O. A erosão provocada pelas partículas promove a limpeza da superfície da liga, eliminando a membrana de Cu₂O, bem como, a ação do íon SO₄²⁻ na nucleação e estabilização do pite. Consequentemente, o constante estado de atrito na superfície da liga dá origem ao menor E_{corr} e maior densidade de corrente passiva. Este efeito pode estar relacionado com o aumento do teor de oxigênio dissolvido devido a agitação do fluxo. Já a diminuição do valor de Eq deve estar associada a uma maior facilidade na etapa de nucleação do pite. Em principio, isto parece contraditório uma vez que se espera que o efeito abrasivo das partículas elimine a membrana de Cu₂O e os íons SO_4^{2-} nele adsorvidos. Uma explicação possível é o afinamento da membrana de Cu₂O pelo processo abrasivo: películas recém formadas são mais finas e, portanto mais facilmente dissolvidas após a adsorção de SO_4^{2-} . Disso resultaria a formação de cavidades mais rasas, nucleadas em Eq inferior.

Figura 6.3.2: Comparativo entre as curvas de polarização potenciodinâmica em 0,01M Na₂SO₄ da condição solubilizada na condição estagnada (ensaio de corrosão) e com agitação e partículas (ensaios de corrosão-erosão).

Figura 6.3.3: Representação esquemática da orientação dos pites nos ensaios de corrosão e corrosão-erosão.

Similarmente ao observado para os ensaios de corrosão, nos ensaios de corrosãoerosão também não foram encontradas evidências de desniquelação. O que reforça que apenas o mecanismo de pite é responsável pelo surgimento das cavidades alongadas e que sua nucleação é determinada por Eq em Na₂SO₄.

Também para o eletrólito de 0,01M Na₂SO₄ foram levantadas curvas de corrosãoerosão assistida por polarização para um teor menor de partículas (2,44% de Al₂O₃). A Fig. 6.3.4 mostra que não há diferenças entre estas curvas e aquelas obtidas para 10% de Al₂O₃ (Fig. 5.5.7). A morfologia de ataque também se manteve, pois aqui também foram observados pites alongados (Fig. 6.3.5). No entanto, a observação em MEV (Fig. 6.3.6 a 6.3.9) mostrou em pelo menos um caso (Fig. 6.3.7) a ocorrência de pites alongados tão profundos quanto aqueles encontrados para os ensaios de corrosão (sem partícula). Novamente, esta evidência está de acordo com as discussões anteriores: quando se emprega 2,44% de Al₂O₃ a limpeza da superfície da liga não é tão eficiente, apesar dos impactos das partículas serem mais agressivos em termos de deformação e arrancamento de metal. Isto é, a remoção da película de Cu₂O não é tão acentuada, principalmente pelo fato dos impactos serem mais localizados, o que sugere uma deformação e remoção mais localizada. A associação destes dois eventos: remoção parcial da película de Cu₂O e presença de pontos de deformação e remoção mais localizados, provavelmente, permitiu a ocorrência do mecanismo discutido anteriormente. Pode-se ainda dizer que a presença de partículas tem um efeito sinergético com relação à formação dos pites, independente da dureza superficial provocada pela precipitação. O aumento do número das partículas acaba criando um número maior de sítios para o início do processo de corrosão por pite.

Figura 6.3.5: Aspecto das superfícies das condições solubilizada e envelhecida por 2, 16 e 1.032 h após ensaio de polarização potenciodinâmica, em solução 0,01M Na₂SO₄ com agitação (2.500 rpm) e partículas (2,44% de Al₂O₃), com término ao ser atingido a densidade de corrente de 10⁻³ A/cm². Ângulo: 15°. Aumento: 200x.

Aumento: 2.500x.

Figura 6.3.6: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da condição solubilizada, após ensaio de polarização potenciodinâmica em solução 0,01M Na₂SO₄ com agitação e partícula (2,44% de Al₂O₃).

Aumento: 1.000x. Aumento: 2.500x. Figura 6.3.7: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da condição envelhecida por 2 h, após ensaio de polarização potenciodinâmica em solução 0,01M Na₂SO₄ com agitação e partícula (2,44% de Al₂O₃).

Aumento: 1.000x.

Aumento: 2.500x.

Aumento: 2.500x.

Figura 6.3.9: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da condição envelhecida por 1.032 h, após ensaio de polarização potenciodinâmica em solução 0,01M Na₂SO₄ com agitação e partícula (2,44% de Al₂O₃).

6.4 DESEMPENHO DA LIGA Cu10Ni-3AI-1,3Fe EM 0,0001M Na₂S.9H₂O

6.4.1 Ensaios Eletroquímicos

A Fig. 5.4.26 apresenta as curvas para as condições solubilizada e envelhecida por 2, 16 e 1.032 h, com tempo de imersão igual a 300 segundos e início da curva no potencial de circuito aberto. Notam-se comportamentos semelhantes, e reprodutíveis, conforme observado na Tab. 5.4.4. De modo análogo ao que foi feito para 0,01M NaCl, a aplicação das equações de Nernst, agora para o pH igual a 9,6 (Tab. 4.4.1), fornece os seguintes potenciais de equilíbrio:

$$E_{H^+/H_2} = -0,567 (V_H) = -0,809 (V_{ECS})$$

 $E_{O_2/H_2O} = + 0,660 (V_H) = + 0,417 (V_{ECS})$

Novamente, observa-se que apenas a reação do oxigênio está ocorrendo, pois o potencial do hidrogênio está abaixo do potencial de início da curva, similar ao observado para 0,01M NaCl e em 0,01M Na₂SO₄. Através da curva experimental da Fig. 6.4.1 levantada para a condição solubilizada até 900 mV abaixo do E_{corr} , observa-se a densidade de corrente limite (i_L), característica do controle por oxigênio.

As curvas anódicas (Fig. 5.4.26) apresentam dois trechos distintos: no primeiro, embora o aspecto seja o da passivação, os valores da densidade de corrente são da ordem de 10⁻⁴ A/cm², sugerindo um comportamento de corrosão com polarização por concentração; em segundo lugar, ocorre a definição do potencial Eq, indicando a ativação de outro processo anódico. A partir do Eq, a densidade de corrente aumenta com o potencial aplicado, mas este aumento é bem inferior aos observados nos eletrólitos anteriores, de 0,01M NaCl e 0,01M Na₂SO₄. A Fig. 6.4.2 compara, para a condição solubilizada, estes diferentes comportamentos.

Figura 6.4.1: Curvas de polarização potenciodinâmica no sentido catódico, em solução 0,0001M Na₂S.9H₂O, para a condição solubilizada da liga Cu10Ni-3Al-1,3Fe. Início da polarização no potencial de circuito (E_{corr}) e término 900 mV abaixo do E_{corr}. Velocidade de varredura: 1 mV/s. Início da polarização após 300 segundos de imersão.

Figura 6.4.2: Comparativo entre as curvas de polarização da condição solubilizada da liga Cu10Ni-3Al-1,3Fe, realizadas em solução 0,01M NaCl, 0,01M Na₂SO₄ e 0,0001M Na₂S.9H₂O.

A falta de passivação observada para 0,0001M Na₂S.9H₂O deve estar relacionada com o pH apresentado pelo eletrólito e suas consequências termodinâmicas. É fato que o aumento do pH desestabiliza o cobre e seus óxidos (CuO e Cu₂O), dando origem a íons complexos de cobre (HCuO₂⁻ e CuO₂²⁻) o que caracteriza um processo de corrosão generalizada (Fig. 6.4.3).

Figura 6.4.3: Diagrama de equilíbrio estável potencial-pH do sistema cobre/água (T = 25°C). Não está sendo considerado Cu(OH)₂.⁸⁸

Desse modo, a aplicação de potencial anódico está permitindo a dissolução da película de Cu₂O, inicialmente formada ao ar, e posteriormente a dissolução do cobre e dos demais elementos. Por se tratarem de íons complexos, a difusão é relativamente lenta, fazendo com que polarização por concentração atue, impedindo o aumento exponencial da densidade de corrente. Por sua vez, o aumento da concentração dos íons complexos leva ao limite de solubilidade, isto é, torna-se

viável a precipitação de óxidos de cobre na superfície a medida em que se aumenta o potencial.

Na ausência dos compostos de enxofre a tendência seria, portanto, a passivação a partir dos íons complexos de cobre, ou pelo menos, o estabelecimento de uma densidade de corrente não muito elevada.

Ao ser atingido o potencial Eq, foram observados pites, de morfologia pouco agressiva, uma vez que os exames em MEV mostraram que se trata de pites rasos, eventualmente preenchidos com produtos de corrosão (Fig. 5.4.28 a 5.4.33). Do mesmo modo que ocorreu para solução 0,01M Na₂SO₄, estes pites não estão relacionados com o mecanismo de corrosão seletiva, pois as análises de EDS não evidenciaram o empobrecimento de níquel nas regiões corroídas.

A ação do íon sulfeto deve ter sido análoga àquela do íon sulfato. No entanto, sua ação não ocorre sobre uma película de Cu₂O tão protetora quanto àquela formada em pH mais baixo, como observado para 0,01M NaCl e 0,01M Na₂SO₄, mas sim sobre uma película de Cu₂O com óxidos de cobre precipitados a partir de íons complexos de cobre, numa região onde o óxido Cu₂O não é facilmente estabilizado (Fig. 6.4.2). Entretanto, pode-se imaginar que uma vez iniciada a interação entre a película de Cu₂O menos protetora e os íons sulfeto, os processos de nucleação e crescimento dos pites sejam semelhantes àqueles que ocorrem para os íons de sulfato.

Outro fato que chama atenção são os valores de Eq obtidos para Na₂SO₄ e Na₂S, que independente do tratamento térmico, são bem maiores na presença de Na₂S (Fig. 5.4.14 e 5.4.27). Novamente, as condições proporcionadas pelo elevado pH do eletrólito 0,0001M Na₂S.9H₂O explicam os valores elevados de Eq, pois o aumento do pH impediu a formação da película de Cu₂O, sendo que na ausência desta, o efeito dos compostos de enxofre não puderam ocorrer. Após ser atingido o limite de solubilidade dos íons complexos de cobre, a superfície provavelmente foi parcialmente recoberta por óxido de cobre, permitindo o início do processo localizado na forma de pites. O caráter precário da película de Cu₂O neste caso, deve ter contribuído para impedir o desenvolvimento do pite com profundidade.

6.4.2 Ensaios de Corrosão-Erosão Assistidos por Polarização

Os efeitos da erosão sobre o comportamento eletroquímico da liga cuproníquel em $0,0001M \text{ Na}_2\text{S.9H}_2\text{O}$ foram muito semelhantes àqueles ocorridos em $0,01M \text{ Na}_2\text{SO}_4$: na presença de erosão, tanto o E_{corr} , quanto o Eq tornaram-se menores (Tab. 5.4.3 e 5.5.2; Tab. 5.4.4 e 5.5.3, para $0,01M \text{ Na}_2\text{SO}_4$ e $0,0001M \text{ Na}_2\text{S.9H}_2\text{O}$, respectivamente).

Conforme discutido no item 6.4.1, um dos efeitos do elevado pH no eletrólito contendo sulfeto é a dificuldade da formação de uma película de Cu_2O a partir dos íons complexos de cobre. O efeito da erosão é, portanto, aumentar essa dificuldade, uma vez que a agitação e o efeito erosivo das partículas na superfície tendem a retardar o acúmulo dos íons complexos e precipitação de óxido de cobre na superfície. O resultado é a diminuição do E_{corr} , comparativamente a condição estagnada (Fig. 6.4.4).

Figura 6.4.4: Comparativo entre as curvas de polarização potenciodinâmica da condição solubilizada em solução 0,0001M Na₂S.9H₂O na condição estagnada (ensaio de corrosão) e com agitação e partículas (ensaios de corrosão-erosão).

Já a diminuição do Eq na presença de partículas deve estar relacionada à formação de defeitos superficiais, por deformação plástica e do arrancamento de material. Então, se por um lado, a erosão impede a formação da película de Cu₂O, retardando o início da corrosão por pite, por outro lado, os defeitos superficiais são fatores que agem no sentido contrário, facilitando a nucleação dos pites. A competição entre estes dois fatores acabou diminuindo o Eq, comparativamente à condição estagnada.

O efeito da fração de partículas na corrosão-erosão também foi examinada neste eletrólito, nas mesmas condições dos eletrólitos 0,01M NaCl e 0,01M Na₂SO₄. A Fig. 6.4.5 apresenta as curvas de polarização potenciodinâmica dos ensaios com 2,44% de Al₂O₃, que mostram que não ocorreram diferenças significativas com relação ao comportamento das curvas e nos valores dos potenciais E_{corr} e Eq. Com relação ao ataque das amostras (Fig. 6.4.6 a 6.4.10), observa-se que a diminuição das partículas deixou mais evidente a formação das cavidades na condição envelhecida, uma vez que a superfície apresentava menos produtos de corrosão.

Figura 6.4.6: Aspecto das superfícies das condições solubilizada e envelhecida por 2, 16 e 1.032 h após ensaio de polarização potenciodinâmica, em solução 0,0001M Na₂S.9H₂O com agitação (2.500 rpm) e partículas (2,44% de Al₂O₃), com término ao ser atingido a densidade de corrente de 10⁻³ A/cm². Ângulo: 15°. Aumento: 200x.

Aumento: 10.000x.

Figura 6.4.7: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da condição solubilizada, após ensaio de polarização potenciodinâmica em solução 0,0001M Na₂S.9H₂O com agitação e partícula (2,44% de Al₂O₃).

Figura 6.4.8: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da condição envelhecida por 2 h, após ensaio de polarização potenciodinâmica em solução 0,0001M Na₂S.9H₂O com agitação e partícula (2,44% de Al₂O₃).

Aumento: 2.500x.

Aumento: 10.000x.

Aumento: 10.000x.

Figura 6.4.10: Imagens de elétrons secundários da região atacada, obtidas por microscopia eletrônica de varredura, da superfície corroída da condição envelhecida por 1.032 h, após ensaio de polarização potenciodinâmica em solução 0,0001M Na₂S.9H₂O com agitação e partícula (2,44% de Al₂O₃).

7 CONCLUSÕES

O presente trabalho analisou o efeito do envelhecimento da liga Cu10Ni-3Al-1,3Fe, sobre as propriedades mecânicas, resistência à corrosão e à corrosão-erosão.

As principais conclusões estão destacadas a seguir:

Microestrutura e Propriedades Mecânicas

Durante o envelhecimento da liga Cu10Ni-3Al-1,3Fe a 550°C, ocorre a precipitação de Ni₃Al, por processo de precipitação descontínua, onde a interface atua como frente de reação, avançando sobre a matriz supersaturada do contorno de grão adjacente e deixando para trás uma estrutura lamelar, típica de precipitação celular; foi verificado também há a formação de precipitados intragranulares.

O envelhecimento provoca o aumento da resistência mecânica da liga Cu10Ni-3Al-1,3Fe, onde o máximo de dureza é atingido para o tempo de tratamento de 16 h; a partir daí, verifica-se a diminuição dos valores de dureza, ou superenvelhecimento da liga. Os resultados mostraram que o limite de escoamento, o limite de resistência e o coeficiente de resistência aumentam até ser atingindo um máximo para o tempo de tratamento de 16 h, a partir do qual diminuem gradativamente. Por sua vez, o alongamento total e o coeficiente de encruamento diminuem até ser atingido o tempo de tratamento de 16 h e depois tendem a se recuperar durante o superenvelhecimento da liga.

Ensaios de corrosão e corrosão-erosão em 0,01M NaCI

A liga nas condições solubilizada e envelhecida apresenta um potencial de quebra de passividade quando polarizada (Eq), tanto no ensaio de corrosão quanto no ensaio de corrosão-erosão, que está relacionado com o início do processo de corrosão seletiva do níquel (desniquelação), e representa um parâmetro de avaliação desta liga a este ataque. Este processo ocorre de forma localizada, mas

sem gerar pites. As alterações na composição química da matriz, na condição envelhecida, provocam um aumento no Eq, mais acentuado para os envelhecimentos de 2 e 1.032 h; este comportamento pode ser devido ao empobrecimento do teor de alumínio na matriz em um primeiro instante e, posteriormente, devido ao aumento do teor de ferro em solução sólida.

Ao se comparar os ensaios de corrosão e corrosão-erosão observa-se uma pequena redução dos valores de Eq e do E_{corr} (potencial de corrosão), explicada pelo efeito do impacto das partículas que intensifica os danos à película passiva. No entanto, com relação à morfologia de ataque ocorreram mudanças mais significativas, onde a presença das partículas provocou a formação de pequenas cavidades, que não estão relacionadas com o processo de corrosão seletiva, mas sim com o processo erosivo. Apesar das diferenças, nas duas situações os processos estão associados à corrosão seletiva do níquel (desniquelação).

A diminuição do teor de partículas de 10% para 2,44%, no ensaio de corrosãoerosão provocou alteração no comportamento eletroquímico da condição solubilizada que, diferentemente do caso com 10%, não apresentou trecho passivo. A diminuição do teor de partículas originou uma estrutura mais encruada devido aos esforços de compressão decorrentes dos impactos, que acabou prejudicando a aderência e integridade da película.

Ensaios de corrosão e corrosão-erosão em 0,01M Na₂SO₄

A liga nas condições solubilizada e envelhecida também apresenta um potencial de quebra de passividade quando polarizada (Eq), tanto no ensaio de corrosão quanto no ensaio de corrosão-erosão, mas que neste caso está relacionado com a formação de pites alongados. Similar ao observado em 0,01M NaCl, nos ensaios de corrosão-erosão ocorreu uma redução dos valores do Eq e do E_{corr}. Esta diminuição também está associada ao efeito causado pelo impacto das partículas, que acaba prejudicando a formação da película. Com relação à morfologia de ataque, nos ensaios de corrosão-erosão também ocorreu a tendência de crescimento de pites com orientação preferencial.

A diminuição no número de partículas nos ensaios de corrosão-erosão (de 10% para 2,44%) acabou criando um número menor de sítios para o início do processo de corrosão por pite. Assim pode-se dizer que a presença de partículas tem efeito sinergético com relação à formação dos pites.

Diferentemente dos ensaios em 0,01M NaCl, neste eletrólito as alterações na composição química da matriz da condição envelhecida não provocaram diferenças significativas no Eq nos ensaios de corrosão e corrosão-erosão, tornando-se mais uma evidência de que a formação dos pites não está associada ao processo de desniquelação. Sugere-se que a nucleação dos pites ocorre pela quebra da passividade por ação do íon sulfato, seguida de crescimento do pite por ação galvânica e/ou dissolução do cobre a íon cuproso e cúprico e com formação de membrana de óxido cuproso na abertura do pite.

Ensaios de corrosão e corrosão-erosão em 0,0001M Na₂S.9H₂O

A liga nas condições solubilizada e envelhecida apresenta também um potencial de quebra de passividade quando polarizada (Eq) que, como no caso do íon sulfato, está relacionado com a formação de pites, sem relação com o processo de desniquelação. Novamente, o Eq ocorre nas condições de corrosão e corrosãoerosão.

Na presença de sulfeto, ocorrem também maiores densidades de corrente onde seria o trecho passivo; provavelmente isso é devido ao elevado pH, que desestabiliza as películas de óxido de cobre. Também os valores de Eq, na presença de sulfeto, são bem maiores do que àqueles obtidos para íons sulfato. Sugere-se que este aumento se deva também ao elevado valor de pH na presença de sulfeto, que, neste caso, impediu a formação de uma película protetora de Cu₂O em toda a superfície, sendo que na ausência desta, o efeito deletério dos compostos de enxofre (nucleação de pite) só teve condições de ocorrer em potenciais mais elevados.
A morfologia de pite também foi alterada, comparativamente ao caso de íon sulfato, surgindo como cavidades arredondadas na presença de íon sulfeto.

A diminuição do teor de partículas para 2,44% teve os mesmos efeitos observados para o eletrólito de 0,01M Na₂SO₄. Novamente, pode-se dizer que a presença de partículas tem efeito sinergético com relação à formação dos pites.

As alterações na composição química da matriz, devido ao tratamento térmico de envelhecimento, não provocaram diferenças significativas no Eq nos ensaios de corrosão e corrosão-erosão, similar ao observado nos ensaios em 0,01M Na₂SO₄.

8 SUGESTÕES PARA TRABALHOS FUTUROS

- Levantar as curvas de envelhecimento da liga Cu10Ni-3Al-1,3Fe em temperaturas abaixo de 780°C.
- Avaliar o efeito da temperatura do eletrólito nos ensaios de corrosão-erosão assistida por polarização, já que este material é utilizado em temperaturas de superiores a temperatura ambiente.
- Estudar a resistência à corrosão-erosão da liga Cu10Ni-3Al-1,3Fe na condição envelhecida de máxima dureza em função da velocidade de impacto, ângulo de impacto e variáveis das partículas (natureza, tamanho, forma e concentração). Os eletrólitos podem ser os mesmos do presente trabalho que contêm: cloreto, sulfato e sulfeto.

9 REFERÊNCIAS BIBLIOGRÁFICAS

- 1. CAIRNS, J.H.; GILBERT, P.T. *The technology of heavy non-ferrous metals and alloys*. London: George Newnes, 1967. p.101-105 e 131-154.
- 2. BAILEY, G.L. *Copper-Nickel-Iron Alloys Resistant to Sea-Water Corrosion*. The Journal of The Institute of Metals, London, p. 243-292, July 1951.
- 3. STEWART, W.C.; LAQUE, F.L. Corrosion resisting characteristics of iron modified 90:10 cupro nickel alloy. Corrosion, n. 8, p. 259-277, Aug. 1952.
- 4. NEWTON, J.; WILSOM, C.L. *Metallurgy of copper*. New York: JOHN WILEY & SONS, 1987. p.379-401 e 415-418.
- 5. HARRINGTON, R.L. *Marine Engineering*. New York: The Society of Naval Architects and Marine Engineers, 1971. p. 829.
- 6. UHLIG, H. H. *The Corrosion Handbook*. New York: JOHN WILEY & SONS, 1948. p.85-93.
- WALDECK, D.H.; BURLEIGH, T.D. Effect of alloying on the resistance of Cu-10%Ni alloys to seawater impingement. Corrosion, v. 55, n. 8, p. 800-804, Aug. 1999.
- 8. WILSON, F.H.; PALMER, E.W. Constitution and properties of some iron-bearing cupro-nickels. Journal of Metals, p. 55-64, Jan. 1952.
- 9. CASTLE, J.E.; PARVIZI, M.S.; ALADJEM, A. *Behaviour of 90-10 cupronickel in sea water.* International Materials Reviews, v. 33, n. 4, p. 169-200, 1988.
- 10. BENDAL, K.C. A longer life in the ocean waves. Materials World, v. 5, n. 12, p.711-713, 1997.
- 11. TUCK, C.D.S. *High-strength cupronickel alloy resists corrosion*. Advanced Materials & Processes, v. 150, n. 5, p. 8, 1996.

- 12. BARTON, E. Strong copper-nickel alloy resists marine corrosion. Advanced Materials & Processes, v. 153, n.3, p. 8, 1998.
- 13. LIBERTO, R.C.N.; *Corrosão e propriedade mecânica de ligas cuproníquel 90-10 com adição de ferro e alumínio.* 2004. 162 p. Dissertação (Mestrado) Escola Politécnica da Universidade de São Paulo. São Paulo, 2004.
- 14. MARTIN, J.R.; HEIDERSBACH, R.H.; LENARD, D.R. *Dealloying of cupronickels in stagnant seawater*. In: Corrosion 99. San Antonio, 1999.
- RIBAS, L.F.F.; LETICHEVSKY, S.; MUSSOI, C.R.S. Aumento da eficiência de usinas hidráulicas caso UHE Luiz Gonzaga. In: XV Seminário Nacional de Produção e Transmissão de Energia Elétrica. Foz do Iguaçu, 1999.
- SYRETT, B.A. Erosion-corrosion of copper-nickel alloys in sea water and other aqueous environments – A literature review. Corrosion-NACE. v. 32, n. 6, p. 242-252, Jun. 1976.
- MUSSOI, C.R.S.; SERRA, E.T.; ARAÚJO, A.A. Corrosão seletiva nas ligas cuproníquel (90-10) empregadas em trocadores de calor de usinas hidrelétricas. In: 6 COTEQ Conferência sobre Tecnologia de Equipamentos. Salvador-Bahia, 2002.
- ATSUMI, T.; NAGATA, K.; SATO, S. Local Erosion-Corrosion of Copper Alloy Condenser Tubes Caused by Lodgement of Foreign Bodies. Sumitomo Light Metal Technical Reports, v. 25, n. 2, p. 74-80, Apr. 1984.
- 19. ASM HANDBOOK: Alloys Phase Diagrams. 3.ed, v.3.
- 20. HUME-ROTHERY, W.; SMALLMAN, R.E.; HAWORTH, C.W. *The structure of metals and alloys.* New York: Chemical Publishing, 1939. p.117-135.
- 21. REED-HILL, R.E. *Physical Metallurgy Principles.* 2.ed. New York: McGraw-Hill, 1973. p. 277-284.
- 22. VERHOEVEN; J.D. *Fundamentals of physical metallurgy*. New York: John Wiley & Sons, 1975. p. 518-519.

- MAGNABOSCO, R; LIBERTO, R.C.N.; WALLNER, C. Endurecimento por solução sólida em ligas de cobre. In: 14 Congresso Brasileiro de Engenharia e Ciências dos Materiais. São Pedro-SP, 2000.
- 24. KOCKS, U.F. *Kinetics of solution hardening*. Metallurgical Transactions A, v. 16A, p. 2109-2129, Dec. 1985.
- 25. HULL, D.; BACON, D.J. Introduction to Dislocation. 3 ed. London: Pergamon Press, 1984. p. 175-209.
- 26. ARDELL, A.J. *Precipitation hardening*. Metallurgical Transactions A, v. 16A, p. 2131-2165, Dec. 1985.
- 27. PORTER, D.A.; EASTERING, K.E. *Phase transformation in metals and alloys.* 2 ed. London; New York: Chapman & Hall, 1992. p. 323-326.
- 28. TU, K.N.; TURNBULL, D. *Morphology of cellular precipitation of tin from lead-tin bicrystals I.* Acta Metallurgical, v. 15, p. 368-376, 1967.
- 29. TU, K.N.; TURNBULL, D. *Morphology of cellular precipitation of tin from lead-tin bicrystals II.* Acta Metallurgical, v. 15, p. 1317-1323, 1967.
- 30. FOURNELLE, R.A.; CLARK, J.B. *The genesis of cellular precipitation reaction.* Metallurgical Transactions, n. 11, p. 2757-2767, 1972.
- 31. Metals Handbook: *Properties and Selection: Nonferrous alloys and specialpurpose materials.* 10.ed., v.2, p.217-341.
- 32. UHLIG, H.H. Corrosion and Corrosion Control. 3.ed. New York: JOHN WILEY & SONS, 1985. Cap. 19.
- 33. WEST, J.M. *Basic Corrosion and Oxidation*. 2.ed. New York: JOHN WILEY & SONS, 1986. p. 191-205.
- 34. METALS HANDBOOK: Corrosion: Fundamentals of corrosion in gases. 9.ed., v.13. 61-67 p.

- 35. RAMANATHAN, L.V. Corrosão e seu controle. São Paulo: Hemus, Cap.5.
- 36. NORTH, R.F.; PRYOR, M.J. *The influence of corrosion product structure on the corrosion rate of Cu-Ni alloys.* Corrosion Science, v. 10, p. 297-311, 1970.
- MURALIDHARAN, V.S.; MATHIYARASU, J.; PALANISWAMY, M. Corrosion resistance of cupronickel – An Overview. Corrosion Reviews, v. 18, n. 1, p. 65-103, 2000.
- MILOSEV, I.; METIKOS-HUKOVIE, M. The behavior of Cu-_xNi (x=10 to 40 wt%) alloys in alkaline solutions containing chloride ions. Electrochimica Acta, v. 42, n. 10, p. 1537-1548, 1997.
- PAGANO, M.W.W.Q.; ZHANG, G.; LALVANI, S.B. A periodic voltage modulation effect on the corrosion of CuONi alloy. Corrosion Science, v. 37, n. 1, p. 97-110, 1995.
- 40. UHLIG, H.H. *Electron configuration in alloys and passivity*. Zeitshrift für Elektrochemie, v. 62, p. 700-707, 1958.
- 41. MATHIYARASU, J.; PALANISWANY, N.; MURALIDHARAN, V.S. *An insight into the passivation of cupronickel alloys in chloride environment.* Proceedings of the Indian Academy of Sciences-Chemical Sciences, v. 113, n. 1, p. 63-76, 2001.
- 42. KEAR, G.; BARKER, B.D.; WALSH, F.C. *Electrochemical corrosion of unalloyed copper in chloride media a critical review*. Corrosion Science, v. 46, n. 1, p. 109-135, 2004.
- 43. POURBAIX, M. *Lições de corrosão electroquímica*. 3.ed. Bruxelas, Bélgica: CEBELCOR, 1987. p. 123-185.
- KATO, C.; PICKERING, H.W.; CASTLE, J.E. Effect of sulfide on the corrosion of Cu-9.4Ni-1.7Fe alloy in aqueous NaCl solution. Journal Electrochemical Society, v. 131, n. 6, p. 1225-1229, 1984.
- 45. MUKHOPADHYAY, N.; BASKARAN, S. Characterization of corrosion products on cupronickel 70:30 alloy in sulfide-polluted seawater. Corrosion, v. 42, n. 2, p. 113-117, 1986.

- PANOSSIAN, Z. Corrosão e proteção contra corrosão em equipamentos e estruturas metálicas. São Paulo: IPT, 1993. v.1. p. 183-192.
- 47. FONTANA, G.M.; GREENE, N.D. Corrosion Engineering. 2.ed. New York: McGRAW-HILL, 1978. p. 61-71.
- 48. METALS HANDBOOK: Corrosion: Metallurgical Influenced Corrosion. 9.ed., v13, p. 123-125.
- 49. COLEGATE, G.T. "Plug" and "Layer" types of attack Susceptible Alloys. Metals Industry, n. 17, p. 483-485, Dec. 1948.
- 50. HEIDERSBACH, R. Clarification of the mechanism of the dealloying phenomenon. Corrosion (NACE), p. 38-44, Feb. 1968.
- 51. MANSFELD, F. Corrosion Mechanisms. New York: Marcel Dekker, 1987. p. 85-118.
- 52. JOSEPH, G. Copper Its trade, manufacture, use, and environmental status. Materials Park, Ohio: ASM International, 1999. p. 122-124.
- 53. AMERICAN SOCIETY FOR TESTING AND MATERIALS, v.3.02. G15-93: Standard Terminology Relating to Corrosion and Corrosion Testing, 1992.
- 54. ORDEN, C.V. Corrosion test and standards: Application and Interpretation. 2ed. Philadelphia: ASTM, 1995. p. 229-239.
- 55. PICKERING, H.W. *Characteristic features of alloy polarization curves*. Corrosion Science, v. 23, n. 10, p. 1107-1120, 1983.
- 56. DETTOFF, R. Thermodynamics in Materials Science. 2 ed. Taylor & Francis: Boca Raton, 2006. p. 571.
- 57. BECCARIA, M.; CROUSIER, J. *Dealloying of Cu-Ni alloys in natural sea water*. Journal Br. Corrosion, v. 24, n. 1, p. 49-52, 1989.
- 58. KAESCHE, H. *Metallic Corrosion*. Houston: National Association of Corrosion Engineers, 1985. p. 194-211.

- 60. METALS HANDBOOK: Corrosion: Localized Corrosion. 9 ed. v. 13. p. 104-122.
- 61. METALS HANDBOOK: Corrosion: Corrosion of Copper and Copper Alloys. 9 ed. v. 13. p. 610-640.
- 62. SANCHEZ, S.R; SIMISON, S; MANFREDI, C. Selection of copper base alloys for use in polluted seawater. Corrosion-NACE. v. 43, n. 8, Aug. 1987.
- 63. SZKLARSKA-SMIALOWSKA, Z. *Pitting corrosion of metals.* Houston, Texas: NACE, 1986. p. 255-261.
- 64. YABUKI, A.; MURAKAMI, M. Critical ion concentration for pitting and general corrosion of copper. Corrosion, v. 63, n. 3, p. 249-257, 2007
- 65. SHREIR, L.L. Corrosion. 2.ed. London: Newnes-Butterworths, 1977. v.2. p. 4:33-4:67.
- 66. LUCEY, V.F. *Mechanism of pitting corrosion of copper in supply waters* Br. Corrosion Journal, v. 2, p. 175 -185, Sep. 1967.
- 67. GAHR, K.H.Z. *Microstructure and wear of materials*. New York: Elsevier, 1987. p. 531-536.
- 68. FINNIE, I. Erosion of surfaces by solid particles. Wear, n. 3, p. 87-103, 1960.
- 69. FINNIE, I. *The mechanisms of erosive wear in ductile metals*. Corrosion-erosion behavior of materials, p. 118-126, 1980.
- 70. BITTER, J.G.A. *A study of erosion phenomena I e II.* Wear, n. 6, p. 5-21 e p. 169-190, 1963.
- 71. TILLY, G.P. A two stage mechanism of ductile erosion. Wear, n. 23, p. 87-96, 1973.

- 73. FINNIE, I. Some reflections on the past and the future of erosion. Wear, n. 186-187, p. 1-10, 1995.
- 74. HUTCHINGS, I.M. Tribology Friction and Wear of engineering materials. p. 133-197.
- 75. MISRA, A.; FINNIE, I. Correlations between two-body and three-body abrasion and erosion of metals. Wear, n. 68, p. 33-39, 1981.
- ALEXANDER, W.O.; HANSON, D. Copper-rich nickel-aluminium-copper alloys. Part I – The effect of heat-treatment on hardness and electrical resistivity. Journal Inst. Metals, v. 61, 1937, p. 83-99
- 77. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM G40-93: Standard terminology related to wear and erosion. 1993.
- 78. FONTANA, M.G. Corrosion Engineering. 3 ed. New York: McGraw-Hill, 1987. p. 31-115.
- 79. SHREIR, L.L. *Corrosion.* 2.ed. London: Newnes-Butterworths, 1977, v.1, p. 136-188.
- 80. PARVIZI, M.S.; ALADJEM, A.; CASTLE, J.E. *Behaviour of 90-10 cuprpnickel in sea water.* International Materials Reviews, v. 33, n. 4, p. 169-200. 1988.
- 81. AMERICAN SOCIETY FOR TESTING AND MATERIALS, v.3.02. ASTM G119: Standard Guide for Determining Synergism Between Wear and Corrosion, 1992.
- 82 STACK, M.M. Looking beyond the millennium: critical issues in the evaluation of materials performance for resistance to erosive wear in corrosive conditions. Wear, n. 233-235, p. 484-496, 1999.
- 83. STACK, M.M.; STOTT, F.H. Approach to modeling erosion-corrosion of alloys using erosion-corrosion maps. Corrosion Science, v. 35, n. 5-8, p. 1027-1034, 1993.

- 84. POULSON, B. Complexities in predicting erosion corrosion. Wear, n. 233-235, p. 497-504, 1999.
- CHO, Y.R.; KIM, Y.H.; LEE, T.D. Precipitation hardening and recrystallization in Cu-4% to 7%Ni-3%Al alloys. Journal of Materials Science, n. 26, p. 2879-2886, 1991.
- 86. SIERPINSKI, Z.; GRYZIECKI, J. *Phase transformation and strengthening during ageing of Cu10Ni3AI alloy*. Materials Science and Engineering, n. A264, p. 279-285, 1999.
- 87. LIBERTO, R.C.N.; MAGNABOSCO, R.; ALONSO-FALLEIROS, N. Selective corrosion in sodium chloride aqueous solution of cupronickel alloys with aluminum and iron additions. Corrosion, v. 63, n. 3, p. 211-219, 2007.
- 88. POURBAIX, M. Atlas of Electrochemical Equibria in Aqueous Solutions. Houston, Texas: National Association of Corrosion Engineers, 1974. p. 384-392.

APÊNDICE A – ENSAIOS DE EROSÃO

Apenas como caráter investigativo foram realizados ensaios de erosão em água destilada e na presença de 3,5% NaCl nas condições solubilizada e envelhecida por 16 h. Estes ensaios foram conduzidos no equipamento apresentado na Fig. 4.4.7, no entanto, foi necessário confeccionar um novo porta amostra, conforme apresentado na Fig. A.1. O eletrólito continha 20% em peso de Al₂O₃, com partículas de granulometria entre 150 e 200 μm. A velocidade do disco de agitação foi de 2.500 rpm e ângulo de impacto de 15° entre a amostra e a partícula, conforme ilustrado na Fig. 4.4.10. As perdas de massa foram determinadas após 12 horas de ensaio. Ao final dos ensaios, as amostras foram lavadas com água destilada e deionizada, e secas com álcool etílico absoluto e ar seco e quente. As superfícies das amostras foram examinadas em microscópio óptico (MO) e microscópio eletrônico de varredura (MEV). Os ensaios foram repetidos três vezes por condição. Utilizou-se também um microscópio de força atômica marca Shimadzu (equipamento do LabMicro/PMT) para exame das superfícies das amostras após os ensaios de corrosão-erosão.

Figura A.1: Porta amostra utilizado para os ensaios de corrosão-erosão em água destilada.

A.1 ENSAIOS DE EROSÃO EM ÁGUA DESTILADA

Algumas amostras foram submetidas à agitação com presença de partículas em água destilada, com o intuito de se analisar apenas o efeito da erosão. Para tanto, foram utilizados os seguintes parâmetros: 20% em peso de Al₂O₃, ângulo de impacto de 15° entre a amostra e as partículas e 2.500 rpm de velocidade de agitação do disco, que proporcionou uma velocidade impacto de 1 m/s. O resultado para as condições solubilizada e envelhecida por 16 h podem ser observados nas Fig. A.1.1 e A.1.2.

Aumento: 5.000x.

Aumento: 20.000x.

Figura A.1.1: Aspecto da superfície da condição solubilizada após ensaio de corrosão-erosão em água destilada. Tempo de ensaio: 12 h. A seta amarela indica fragmento de partícula aderido à superfície.

Aumento: 20.000x.

Figura A.1.2: Aspecto da superfície da condição envelhecida por 16 h após ensaio de corrosão-erosão em água destilada. Tempo de ensaio: 12 h. Através das imagens obtidas em microscópio eletrônico de varredura (MEV), podese observar que a condição solubilizada apresentou mais deformação que a amostra envelhecida por 16 h. Estas superfícies também foram examinadas em microscópio de força atômica (MFA), conforme apresentado nas Fig. A.1.3 e A.1.4, que evidenciam a presença de pontos onde a deformação foi mais acentuada na condição solubilizada. Pode-se observar ainda na condição solubilizada a presença de partículas aderidas na superfície (Fig. A.1.1). As análises no MFA ainda permitiram obter os valores de rugosidade (Ra), para áreas de 80 x 80 μ m, que estão apresentados na Tab. A.1.1. Estes valores de Ra foram obtidos após os ensaios e não apresentaram diferenças significativas entre os diferentes tratamentos térmicos.

80 x 80 μm (2D)

30 x 30 µm (3D)

Figura A.1.3: Imagens da superfície ensaiada da condição solubilizada obtida através de um microscópio de força atômica, após ensaio de erosão em água destilada conduzido por 12 h.

30 x 30 µm (2D)

Figura A.1.4: Imagens da superfície ensaiada da condição envelhecida por 16 h obtida através de um microscópio de força atômica, após ensaio de erosão em água destilada conduzido por 12 h.

Tabela A.1.1: Valores de	rugosidade (Ra)	das amostras	ensaiadas em	água destilada	por 12 h com
	20% em peso de	e Al ₂ O ₃ , em áre	eas de 80 x 80	<u>μ</u> m.	

Amostras	Ra (μm)
Solubilizada	50,07
16 h	48,08

Os valores de perda de massa destes ensaios não apresentaram diferenças significativas, como mostra a Tab. A.1.2, que apresenta a média e desvio-padrão de três ensaios.

Tabela A.1.2: Valores de perda de massa das amostras ensaiadas em água destilada com 20% em

peso de	$A_1_2O_3$ por 12 n.
Amostras	∆m/A (mg/cm ² .dia)
Solubilizada	1,39 ±0,18
16 h	0,93 ±0,27

Para entender melhor os mecanismos atuantes no processo de corrosão-erosão em água destilada, foram realizados novos ensaios com tempos menores, que permitissem observar as primeiras alterações na superfície. Estes ensaios foram conduzidos por tempos de 15, 30 e 60 min. No entanto, apenas as amostras ensaiadas por 60 min (1 h), foram examinadas no MFA, uma vez que as alterações causadas nos ensaios de 15 e 30 min não provocaram alterações significativas na superfície. Os resultados podem ser observados através das Fig. A.1.5 e A.1.6. As imagens mostram que a condição solubilizada apresenta mais deformação, enquanto a condição envelhecida apresenta microcortes (*microcutting*) e microsulcos (*microploughing*), que podem ser observados com clareza nas imagens 2D das Fig. A.1.5 e A.1.6.

microscópio de força atômica, após ensaio de erosão em água destilada conduzido por 1 h.

30 x 30 µm (3D)

A.2 ENSAIOS DE EROSÃO EM SOLUÇÃO 3,5% NaCI

Após os ensaios realizados em água destilada, foram realizados ensaios em solução 3,5% NaCl, para analisar o efeito da presença de cloreto no processo de corrosãoerosão da superfície e as suas respectivas taxas de desgaste. Para tanto, utilizou-se os seguintes parâmetros: 20% em peso de Al₂O₃, ângulo de impacto de 15° entre a amostra e as partículas e 2.500 rpm de velocidade de agitação do disco, que proporcionou uma velocidade impacto de 1 m/s. Os resultados destes ensaios para as condições solubilizada e envelhecida por 16 h podem ser observados nas Fig. A.2.1 e A.2.2, que apresentam imagens obtidas em microscópio eletrônico de varredura (MEV). Nota-se que as amostras sofreram deformação da superfície, mas com a presença de corte em ambos os casos. Pode-se observar ainda na condição solubilizada a presença de partículas aderidas na superfície, o que não ocorre para a condição envelhecida devido à maior dureza.

Aumento: 5.000x.

Aumento: 20.000x.

Figura A.2.2: Aspecto da superfície para a condição envelhecida por 16 h após ensaio de corrosãoerosão em solução 3,5% NaCI. Tempo de ensaio: 12 h.

Os valores de perda de massa entre as amostras não apresentaram diferenças significativas, como mostra a Tab. A.2.1, mas há sinergismo de corrosão-erosão, já

que os valores de perda de massa destes ensaios (Tab. A.2.1) são aproximadamente 7 vezes superiores àqueles obtidos em água destilada.

de Al	$_{2}O_{3}$ por 12 h.
Amostras	∆m/A (mg/cm ² .dia)
Solubilizada	7,10 ±0,20
16 h	7,43 ±0,31

Tabela A.2.1: Valores de perda de massa das amostras ensaiadas em 3,5% NaCl com 20% em peso de AI_2O_3 por 12 h.

A.3 DISCUSSÃO DOS RESULTADOS DOS ENSAIOS DE EROSÃO EM ÁGUA DESTILADA E 3,5% NaCI

As Fig. A.1.1 e A.1.2 mostram a superfície das condições solubilizada e envelhecida por 16 h após os ensaios de erosão com apenas a presença de partículas (condição não corrosiva). Através das imagens observa-se que estas são livres de pites ou de algum outro tipo de corrosão, onde é possível apenas identificar a presença de deformação das superfícies, que foi um pouco mais acentuada na condição solubilizada (Fig. A.1.3 a A.1.4). Apesar da diferença de deformação observada nas Fig. A.1.3 a A.1.4, os valores de rugosidade não apresentaram diferenças significativas, conforme observado na Tab. A.1.1. Isto pode estar relacionado com o fato do sistema tribológico ter atingido uma condição estável, onde não há mudanças do mecanismo de remoção de material. Esta hipótese fica mais evidente quando se comparam as imagens da Fig. A.1.5 e A.1.6, que apresentam as superfícies da condição solubilizada e envelhecida por 16 h para ensaios de apenas 1 h, onde se observa que a condição solubilizada apresenta apenas deformação da superfície, enquanto a envelhecida por 16 h apresenta microcorte e microsulco. Estas diferenças estão relacionadas diretamente com as propriedades mecânicas das duas condições, como por exemplo, a dureza (Fig. 5.1.1). No caso da condição solubilizada se espera observar uma superfície mais deformada, enquanto na condição envelhecida por 16 h a superfície apresentaria cortes, conforme ilustrado nas Fig. Fig. A.1.5 e A.1.6. Estas características também foram observadas nos ensaios conduzidos com 3,5% NaCl (Fig. A.2.1 e A.2.2).

Comparando as imagens das superfícies ensaiadas com apenas a presença de partículas (condição não corrosiva) com as imagens dos ensaios conduzidos com 3,5% NaCl (Fig. A.2.1 e A.2.2), observa-se que esta também apresenta deformação, mas agora com de cortes evidentes. Estes exames permitem dizer que a adição de 3,5% NaCl intensifica o processo de erosão.

Com relação aos valores de perda massa observados na Fig. A.3.1, pode-se ver claramente que existe uma influência da dureza no processo de desgaste nos ensaios de erosão sem a presença de um agente corrosivo. No entanto, quando inserido o efeito corrosivo os valores de perda de massa aparentemente são maiores para condição envelhecida por 16 h, o que acaba sendo contraditório. Um dos fatores que podem explicar este comportamento é a presença dos fragmentos das partículas aderidas na superfície deformada, principalmente na condição solubilizada, que podem estar mascarando a verdadeira degradação. A fragmentação das partículas pode ser observada na Fig. A.3.2, que mostra também que as partículas após os ensaios de erosão não sofreram alterações significativas nas suas características.

Figura A.3.1: Variação de perda de massa das condições solubilizada e envelhecida por 16 h em meio não corrosivo e em 3,5% NaCl. Os ensaios foram conduzidos com 20% em peso de Al₂O₃.

Partícula nova

Partícula após o ensaio

Figura A.3.2: Comparativo entre a morfologia das partículas novas e das partículas após os ensaios de erosão de 12 h, sem a presença de NaCl.

ANEXO A – Desenho Técnico do Aparato Experimental dos Ensaios de Corrosão-Erosão

	MEDIDAS SEM TOLERÂNCIA CONFORME DIN 7168 - MÉDIA ATÉ 6 DE 30 DE 120 DE 400 DE 1000 ± 0.1 ± 0.2 ± 0.3 ± 0.5 ± 0.8 ± 1.2 ± 0.1 ± 0.2 ± 0.3 ± 0.5 ± 0.8 ± 1.2
01 01 Placa com 10 mm de espessura	Polipropileno
POS. Qt DENOMINAÇÃO E DIMENSÕES	MATERIAL - REFERÊNCIA PESO (kg)
UNIDADE mm Tampa	REVISÃO n*: Original
DESENHADO POR: Rodrigo Liberto	ESCALA: 1:2

		M4		
Pizz Pizz				
		RAD SIL		
MINAÇÃO E DIMENSÕES	Alumínio MATERI	IAL — REF	ERÊNCIA	 PESO (kg
	MINAÇÃO E DIMENSÕES	Alumínio MINAÇÃO E DIMENSÕES MATER uporte do porta amostra	Alumínio <u>MINAÇÃO E DIMENSÕES</u> <u>MATERIAL - REF</u> <u>uporte do porta amostra</u> <u>0 POR: Rodrigo Liberto</u>	Alumínio <u>MINAÇÃO E DIMENSÕES</u> <u>MATERIAL - REFERÊNCIA</u> uporte do porta amostra <u>REVISÃO nº:</u> <u>REVISÃO nº:</u>

6.3	R14.5 R15 R15 R15 R15 R15 R15 R15 R15 R15 R1					DIN 716 DE 40 ATÉ 10 ± 0.	8 - ME 00 DE 1 00 ATÉ 8 ±	EDIA 1000 1.2
01 01 _ POS. Qt UNIDADE mm	DENOMINAÇÃO E DIMENSÕES Título: Suporte do eletrodo de r DESENHADO POR: Rodrigo Liberto	Polip M	aropilen ATERIAL ncia	o _ — RE	FERÊNC REVISÃO FSCALA:	IA 0 nº: Ori 2 · 1	PESO	(kg)

		MEDIDAS	SEM	I TOL	ERÂNC	CIA CO	NFORME	DIN	7168	— M	ÉDIA
63/		ATÉ 6	DE ATÉ	6 30	DE ATÉ	30 120 /	DE 120 ATÉ 400	DE ATÉ	400 1000	DE ATÉ	1000 2000
		± 0.1	±	0.2	±	0.3	± 0.5	±	0.8	±	1.2
		4 M16 Ø14 V122			g 10						
		Polip	orop	ilen	0	סררי					(1
rus. Qt	DEINUMINAÇAU E DIMENSUES	M	AIE	RIAL		KEFI	LKENC	ıΑ	[+	~E20	(кд
	Título:	vda									
UNIDADE mm	Suporte do contra eletro	00					00/07	<u> </u>	0	!	
	UESENHAUU PUK: Kodrigo Liberto						KEVISA	יי ר <u>י</u>	Urigii	nal	
							LSCALA	:	Z:1		

6.3		MEDIDAS ATÉ 6 ± 0.1	SEM DE ATÉ	TOLE 6 30 0.2	ERÂNO DE ATÉ	CIA CO 30 120 0.3	NFORME DE 120 ATÉ 400	DIN DE ATÉ	7168 400 1000 0.8	– M DE ATÉ	ÉDIA 1000 2000
	L	<u> </u>	<u> </u>	<u></u>		<u></u>	<u> </u>	<u>' -</u>	0.0	<u> </u>	1.2
	ø24	-									
		/16									
					\bigcirc	 \					
]		! \					
				(с С	I					
	ϕ	14									
		122									
01 01 _	 DENOMINACÃO E DIMENSÕES	Alum	nínic ∆⊤⊑⊑) 2141		REE				DECU	$(k\alpha)$
						INEFI			r	L3U	(ry)
UNIDADE mm	Suporte do termopar										
	DESENHADO POR: Rodrigo Liberto						REVISÃ	0 nº:	Origi	nal	
							ESCAL	٨:	2:1		

6.3		MEDIDAS ATÉ 6 ± 0.1	SEM TOL DE 6 ATÉ 30 ± 0.2	ERÂNC DE ATÉ	IA CO 30 120 0.3	DE 12 DE 12 ATÉ 40 ± 0	IE DIN 0 DE 00 AT .5 ±	7168 400 1000 0.8	- M DE ATÉ ±	ÉDIA 1000 200 1.2
		ø3	-							
		 M3	130							
01 01 _ POS. Qt	DENOMINAÇÃO E DIMENSÕES	Aço M.	inoxida	ável	REF	ERÊN			PESO	(ki
UNIDADE mm	TITULO: Haste — porta amostra DESENHADO POR: Rodrigo Liberto					REVIS	5Ã0 nº: LA:	Orig 1:1	nal	

